Effect of boundary layer thickness on ammonia gas sensing of Cr2O3-decorated ZnO multipods

Abstract

New insights into controlling boundary layer thickness are investigated in growth of Cr2O3-decorated ZnO multipods on a tilted silicon substrate. In the first step, ZnO multipods were grown on a tilted silicon surface using a vapor transport method in a quartz tube. Next step, low concentration of Cr2O3 nanoparticles was decorated on the ZnO multipods using a PVD machine. Both arm diameter and density of the Cr2O3-decorated ZnO multipods were found to be strongly dependent on the boundary layer thickness. The sensing properties of the samples measured by half bridge method indicated that decoration of the Cr2O3 nanoparticles on the ZnO multipods significantly enhanced the response to 100 ppm NH3 up to 85, CO2 up to 29 and NO2 up to 27. The response/recovery times were 25 s/48 s at 300 °C. Blue defect emission appeared in room temperature photoluminescence spectra of the sample grown in a thin boundary layer thickness.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    D. Mausumi, D. Sarkar, Ceram. Int. 43, 11123 (2017)

    Article  Google Scholar 

  2. 2.

    Y. Hou, A.H. Jayatissa, Appl. Surf. Sci. 309, 46 (2014)

    ADS  Article  Google Scholar 

  3. 3.

    A.K. Bal, A. Singh, R.K. Bedi, Appl. Phys. A 103, 497 (2011)

    ADS  Article  Google Scholar 

  4. 4.

    D.F. Shriver, P.W. Atkins, Inorganic Chemistry, 3rd edn. (Oxford University Press, Oxford, 2004), pp. 184–190

    Google Scholar 

  5. 5.

    K.-S. Choi, S.-P. Chang, Mater. Lett. 230, 48 (2018)

    Article  Google Scholar 

  6. 6.

    P. Rai, Y.-S. Kim, H.-M. Song, M.-K. Song, Y.-T. Yu, Sens. Actuators B Chem. 165, 133 (2012)

    Article  Google Scholar 

  7. 7.

    L. Zhu, W. Zeng, Sens. Actuators A Phys. 267, 242 (2017)

    Article  Google Scholar 

  8. 8.

    J. Zheng, Z.-Y. Jiang, Q. Kuang, Z.-X. Xie, R.-B. Huang, L.-S. Zheng, J. Solid State Chem. 182, 115 (2009)

    ADS  Article  Google Scholar 

  9. 9.

    Z.L. Wang, ACS Nano 2, 1987 (2008)

    Article  Google Scholar 

  10. 10.

    A. Tamvakos, D. Calestani, D. Tamvakos, R. Mosca, D. Pullini, A. Pruna, Microchim. Acta 182, 1991 (2015)

    Article  Google Scholar 

  11. 11.

    D.F. Shriver, T.M. Weller, T. Overton, J. Rourke, A.F. Armstrong, Inorganic chemistry, 6th edn. (NY W.H. Freeman and Company, New York, 2014)

    Google Scholar 

  12. 12.

    A. Abbasi, M. Hamadanian, M. Salavati-Niasari, S. Mortazavi-Derazkola, J. Colloid Interface Sci. 500, 276 (2017)

    ADS  Article  Google Scholar 

  13. 13.

    K. Cherifi, G. Rekhila, S. Omeiri, Y. Bessekhouad, M. Trari, J. Photochem. Photobiol. 368, 290 (2019)

    Article  Google Scholar 

  14. 14.

    A. Kamalianfar, S.A. Halim, S.P. Jahromi, M. Navasery, F.U. Din, K.P. Lim, S.K. Chen, J.A.M. Zahedi, Chin. Phys. Lett. 29, 128102 (2012)

    ADS  Article  Google Scholar 

  15. 15.

    A.B. Djurišić, Y.H. Leung, Small. 2, 944 (2006)

    Article  Google Scholar 

  16. 16.

    R.N. Aljawfi, F. Rahman, K.M. Batoo, J. Mol. Struct. 199, 1065 (2014)

    Google Scholar 

  17. 17.

    F. Giovannelli, C. Chen, P. Díaz-Chao, E. Guilmeau, F. Delorme, J. Eur. Ceram. Soc. 38, 5015 (2018)

    Article  Google Scholar 

  18. 18.

    Y.G. Wang, S.P. Lau, H.W. Lee, S.F. Yu, B.K. Tay, X.H. Zhang, K.Y. Tse, H.H. Hng, J. Appl. Phys. 94, 1597 (2003)

    ADS  Article  Google Scholar 

  19. 19.

    Y.H. Navale, S.T. Navale, F.J. Stadler, N.S. Ramgir, V.B. Patil, Ceram. Int. 45, 1513 (2019)

    Article  Google Scholar 

  20. 20.

    Y. Yan, J. Liu, H. Zhang, D. Song, J. Li, P. Yang, M. Zhang, J. Wang, J. Alloy Compd. 780, 193 (2019)

    Article  Google Scholar 

  21. 21.

    A. Chakraborty, X. Liu, H. Wang, Microsyst. Technol. 18, 1497 (2012)

    Article  Google Scholar 

  22. 22.

    S.M. Sze, V.L.S.I. Technology, 2th edn (Tata McGraw Hill, New York, 2003)

    Google Scholar 

  23. 23.

    L.E. Greene, M. Law, D.H. Tan, M. Montano, J. Goldberger, G. Somorjai, P. Yang, Nano Lett. 5, 1231 (2005)

    ADS  Article  Google Scholar 

  24. 24.

    Schlichting (Deceased) H., Gersten K, Fundamentals of boundary-layer theory, in Boundary-Layer Theory (Springer, Berlin, Heidelberg, 2017). https://doi.org/10.1007/978-3-662-52919-5_2

    Google Scholar 

  25. 25.

    R. Shabannia, Proc. Natl. Sci. Mater. 25, 95 (2015)

    Article  Google Scholar 

  26. 26.

    A. Kamalianfar, M.G. Naseri, M. Kamalianfar, S.A. Halim, K.P. Lim, Acta Metall. Sin. Engl. 29(6), 595 (2016)

    Article  Google Scholar 

  27. 27.

    Manoj K. Gupta, Nidhi Sinha, Binay Kumar, J. Appl. Phys. 112, 014303 (2012)

    ADS  Article  Google Scholar 

  28. 28.

    E.M. Mkawi, K. Ibrahim, M.K.M. Ali, M.A. Farrukh, A.S. Mohamed, Appl. Nanosci. 5, 993 (2015)

    ADS  Article  Google Scholar 

  29. 29.

    R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, Nanomicro Lett. 7, 97 (2014)

    Google Scholar 

  30. 30.

    A. Wei, L. Pan, W. Huang, Mater. Sci. Eng. C 176, 1409 (2011)

    Article  Google Scholar 

  31. 31.

    Y. Qiu, S. Yang, Adv. Funct. Mater. 17, 1345 (2007)

    Article  Google Scholar 

  32. 32.

    H. Tai, Z. Yuan, W. Zheng, Z. Ye, C. Liu, X. Du, Nanoscale Res. Lett. 11, 130 (2016)

    ADS  Article  Google Scholar 

  33. 33.

    M.S. Wagh, G.H. Jain, D.R. Patil, S.A. Patil, L.A. Patil, Sens. Actuators B Chem. 115, 128 (2006)

    Article  Google Scholar 

  34. 34.

    A.V. Patil, C.G. Dighavkar, S.K. Sonawane, S.J. Patil, R.Y. Borse, Sens. Transducers 108(9), 189 (2009)

    Google Scholar 

  35. 35.

    R.S. Andre, D. Kwak, Q. Dong, W. Zhong, D.S. Correa, L.H.C. Mattoso, Y. Lei, Sensors 18, 1058 (2018)

    Article  Google Scholar 

  36. 36.

    V. Talwar, O. Singh, R.C. Singh, Sens. Actuators B Chem. 191, 276 (2014)

    Article  Google Scholar 

  37. 37.

    R. Huang, S. Ye, K. Sun, K.S. Kiang, C.H. de Groot, Nanoscale Res. Lett. 12, 541 (2017)

    ADS  Article  Google Scholar 

  38. 38.

    V. Khorramshahi, J. Karamdel, R. Yousefi, J. Mater. Sci Mater. Electron. 29, 14679 (2018)

    Article  Google Scholar 

  39. 39.

    A. Kamalianfar, S.A. Halim, A.K. Zak, Ceram. Int. 40, 3193 (2014)

    Article  Google Scholar 

  40. 40.

    A. Sáaedi, R. Yousefi, J. Appl. Phys. 122, 224505 (2017)

    ADS  Article  Google Scholar 

  41. 41.

    L. Zhang, L. Yin, C. Wang, N. Lun, Y. Qi, D. Xiang, J. Phys. Chem. C 114, 9651 (2010)

    Article  Google Scholar 

  42. 42.

    R.C. Pawar, H. Kim, C.S. Lee, Curr. Appl. Phys. 14, 621 (2014)

    ADS  Article  Google Scholar 

  43. 43.

    C.H. Ahn, Y.Y. Kim, D.C. Kim, S.K. Mohanta, H.K. Cho, J. Appl. Phys. 105, 013502 (2009)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Kamalianfar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kamalianfar, A., Naseri, M.G. Effect of boundary layer thickness on ammonia gas sensing of Cr2O3-decorated ZnO multipods. Appl. Phys. A 125, 370 (2019). https://doi.org/10.1007/s00339-019-2667-9

Download citation