Preferentially oriented CuCdS2 thin films and thickness effects on structural, optical and electrical properties

Abstract

Copper cadmium sulfide (CuCdS2) thin films were deposited via thermal evaporation deposition technique. Crystallinity and adhesive nature of the thin films were improved at the substrate temperature of 300 °C. CuCdS2 thin films possess nanocrystalline nature with hexagonal structure and its grain size increased from 20 to 37 nm with respect to deposition time. Linear increment in the thickness with respect to deposition time ensued preferential orientation along (002) plane. Raman spectra explained the vibrational modes of CuCdS2 nanoparticles and thin films. The intensity ratio between LO and 2LO peaks (I2LO/ILO) increased with grain size. Optical studies revealed that the transmission retained 30–60% in blue to green band region and reached maximum value in yellow–red band. Band gap values vary between 2.1 and 2.4 eV, and the expansion attributed to confinement of charges. Atomic force microscopy images showed that the films acquired nanocrystallinity with definite boundaries between the grains and grain sizes increased from 18 to 32 nm. Grains were grown as spikes during a longer deposition period and average surface roughness of the films was increased with grain size. Morphology of the surface grains tended to grow in circular shape to minimize the surface free energy. Oxidation states of the elements were found using X-ray photoelectron spectroscopy and stoichiometry of all the CuCdS2 films could be explained as 1:1:2 for Cu:Cd:S. Electrical studies revealed that all the films had p-type semiconducting nature. Resistivity values of the films are found in the order of 10−2 Ω; concomitant with the thickness it decreased to 10−3. Bulk concentration values lay in the range of 1019–1020. Photoconductivity measurements showed that the p–n junction of CuCdS2/n-Si had rectifying nature.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    S.M. Salem, M.B.S. Osman, A.M. Salem, G.B. Sakr, H.M. Hashem, I.M. El Radaf, J. Appl. Sci. Res. 9, 3593 (2013)

    Google Scholar 

  2. 2.

    P.K.V. Pillai, K.P. Vijayakumar, Sol. Energy Mater. Sol. Cells 51, 47 (1998)

    Article  Google Scholar 

  3. 3.

    S.H. Chaki, M.P. Deshpande, J.P. Tailor, Thin Solid Films 550, 291 (2014)

    ADS  Article  Google Scholar 

  4. 4.

    Y. Liu, M. Liu, M.T. Swihart, J. Phys. Chem. C 121, 13435 (2017)

    Article  Google Scholar 

  5. 5.

    J. Santos Cruz, S.A. Mayén Hernández, F. Paraguay Delgado, O. Zelaya Angel, R. Castanedo Pérez, G. Torres Delgado, Int. J. Photoenergy 2013, (2013). https://doi.org/10.1155/2013/178017

    Article  Google Scholar 

  6. 6.

    M.T.S. Nair, P.K. Nair, Semicond. Sci. Technol. 4, 191 (1989)

    ADS  Article  Google Scholar 

  7. 7.

    Y. Rodríguez-Lazcano, M.T.S. Nair, P.K. Nair, J. Cryst. Growth 223, 399 (2001)

    ADS  Article  Google Scholar 

  8. 8.

    A. Malathi, J. Madhavan, J. Nano Res. 48, 49 (2017)

    Article  Google Scholar 

  9. 9.

    R. Saraf, IOSR J. Electr. Electron. Eng. 2, 2278 (2012)

    Google Scholar 

  10. 10.

    K. Bindu, C.S. Kartha, K.P. Vijayakumar, T. Abe, Y. Kashiwaba, Sol. Energy Mater. Sol. Cells 79, 67 (2003)

    Article  Google Scholar 

  11. 11.

    M.S. Sreejith, D.R. Deepu, C.S. Kartha, K. Rajeevkumar, K.P. Vijayakumar, Appl. Phys. Lett. 105, 14 (2014)

    Article  Google Scholar 

  12. 12.

    I.A. Ezenwa, N.L. Okoli, Eur. Open Appl. Phys. J. 1, 1 (2015)

    Google Scholar 

  13. 13.

    D. Tsamouras, E. Dalas, S. Sakkopoulos, E. Vitoratos, Appl. Surf. Sci. 65, 388 (1993)

    ADS  Article  Google Scholar 

  14. 14.

    V. Nirmal Kumar, R. Suryakarthick, S. Karuppusamy, M. Gupta, Y. Hayakawa, R. Gopalakrishnan, RSC Adv. 5, 23015 (2015)

    Article  Google Scholar 

  15. 15.

    V. Nirmal Kumar, R. Suriakarthick, Y. Hayakawa, S. Hussain, G.M. Bhalerao, M. Gupta, V. Sathe, R. Gopalakrishnan, Superlattices Microstruct. 76, 125 (2014)

    ADS  Article  Google Scholar 

  16. 16.

    A.H. Khan, A. Dalui, S. Mukherjee, C.U. Segre, D.D. Sarma, S. Acharya, Angew. Chem. 127, 2681 (2015)

    Article  Google Scholar 

  17. 17.

    S. Dorothy, T. Lavanya, K. Punithamurthy, R. Jayavel, K. Satheesh, J. Nanosci. Nanotechnol. 16, 9716 (2016)

    Article  Google Scholar 

  18. 18.

    K. Saravanan, R. Suriakarthick, S. Ananthakumar, S.M. Babu, S. Selladurai, Mater. Sci. Semicond. Process. 66, 123 (2017)

    Article  Google Scholar 

  19. 19.

    K. Saravanan, S. Selladurai, S. Ananthakumar, R. Suriakarthick, Mater. Sci. Semicond. Process. 93, 345 (2019)

    Article  Google Scholar 

  20. 20.

    A. Hussain, R. Ahmed, N. Ali, N.M. AbdEl-Salam, K. bin Deraman, Y.Q. Fu, Surf. Coat. Technol. 320, 404 (2017)

    Article  Google Scholar 

  21. 21.

    S.C. Ezugwu, F.I. Ezema, P.U. Asogwa, Chalcogenide Lett. 7, 341 (2010)

    Google Scholar 

  22. 22.

    V.G. Rajeshmon, C.S. Kartha, K.P. Vijayakumar, C. Sanjeeviraja, T. Abe, Y. Kashiwaba, Sol. Energy 85, 249 (2011)

    ADS  Article  Google Scholar 

  23. 23.

    S. Suwanboon, Nar. Uni. J. 16(2), 173 (2008)

    Google Scholar 

  24. 24.

    M. Saleem, L. Fang, A. Wakeel, M. Rashad, C.V. Kong, World J. Condens. Matter Phys. 2012, 10 (2012)

    Article  Google Scholar 

  25. 25.

    L. Znaidi, G.J.A.A.S. Illia, S. Benyahia, C. Sanchez, A.V. Kanaev, Thin Solid Films 428, 257 (2003)

    ADS  Article  Google Scholar 

  26. 26.

    R. Suriakarthick, V. Nirmal Kumar, R. Indirajith, T.S. Shyju, R. Gopalakrishnan, Superlattices Microstruct. 75, 667 (2014)

    ADS  Article  Google Scholar 

  27. 27.

    C. Suryanarayana, M.G. Norton, X-Ray Diffraction, 1st edn. (Springer Science + Business Media, New York, 1998), p. 101

    Google Scholar 

  28. 28.

    A.M. Raj, V. Agnes, V.B. Jothy, C. Ravidhas, J. Wollschläger, M. Suendorf, M. Neumann, M. Jayachandran, C. Sanjeeviraja, Thin Solid Films 519, 129 (2010)

    ADS  Article  Google Scholar 

  29. 29.

    M.F. Saleem, H. Zhang, Y. Deng, D. Wang, J. Raman Spectrosc. 48, 224 (2017)

    ADS  Article  Google Scholar 

  30. 30.

    A.G. Milekhin, L.L. Sveshnikova, T.A. Duda, N.V. Surovtsev, S.V. Adichtchev, D.R.T. Zahn, JETP Lett. 88, 799 (2008)

    ADS  Article  Google Scholar 

  31. 31.

    B. Ahmed, S. Kumar, S. Kumar, A.K. Ojha, J. Alloys Compd. 679, 324 (2016)

    Article  Google Scholar 

  32. 32.

    R.R. Prabhu, M.A. Khadar, Bull. Mater. Sci. 31, 511 (2008)

    Article  Google Scholar 

  33. 33.

    B.R. Kumar, T.S. Rao, Dig. J. Nanomater. Biostruct. 7, 1881 (2012)

    Google Scholar 

  34. 34.

    M. Muthusamy, S. Muthukumaran, Optik (Stuttg). 126, 5200 (2015)

    ADS  Article  Google Scholar 

  35. 35.

    P. Nandakumar, C. Vijayan, Y.V.G.S. Murti, J. Appl. Phys. 91, 1509 (2002)

    ADS  Article  Google Scholar 

  36. 36.

    R.R. Prabhu, M.A. Khadar, Pramana J. Phy. 65, 801 (2005)

    ADS  Article  Google Scholar 

  37. 37.

    F.M. Li, C.T. Zhu, S.Y. Ma, A.M. Sun, H.S. Song, X.B. Li, X. Wang, Mater. Sci. Semicond. Process. 16, 1079 (2013)

    Article  Google Scholar 

  38. 38.

    Y. Wang, N. Herron, J. Phys. Chem. 92, 4988 (1988)

    Article  Google Scholar 

  39. 39.

    M.T.S. Nair, L. Guerrero, P.K. Nair, Semicond. Sci. Technol. 13, 1164 (1998)

    ADS  Article  Google Scholar 

  40. 40.

    M.K.M. Ali, K. Ibrahim, E.M. Mkawi, A. Salhin, Int. J. Electrochem. Sci. 7, 13093 (2012)

    Google Scholar 

  41. 41.

    X. Zheng, F. Gao, F. Ji, H. Wu, J. Zhang, X. Hu, Y. Xiang, Mater. Lett. 167, 128 (2016)

    Article  Google Scholar 

  42. 42.

    R. Shabu, A.M.E. Raj, C. Sanjeeviraja, C. Ravidhas, Mater. Res. Bull. 68, 1 (2015)

    Article  Google Scholar 

  43. 43.

    R. Anitha, D.S. Vavilapalli, S.S. Menon, S. Surender, K. Baskar, S. Singh, J. Mater. Sci. 53, 11553 (2018)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors like to acknowledge Micro and Nano Characterization Facility (MNCF), CeNSE, IISc, for extending facilities such as AFM and Raman characterizations funded by Ministry of Electronics and Information Technology, and Department of Science and Technology Govt. of India.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Saravanan Krishna Sundaram.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sundaram, S.K., Subramanian, S., Panneerselvam, V. et al. Preferentially oriented CuCdS2 thin films and thickness effects on structural, optical and electrical properties. Appl. Phys. A 125, 356 (2019). https://doi.org/10.1007/s00339-019-2656-z

Download citation