Manipulation of ion energies in pulsed laser deposition to improve film growth

Abstract

The growth and crystallinity of oxide thin films using a physical vapour deposition technique like molecular beam epitaxy (MBE) or pulsed laser deposition (PLD) is influenced by the flux of materials, the kinetic energy of species, and the substrate temperature. PLD is generating on a short time scale (µs) a large flux of materials, species with large kinetic energies (few eV up to several 10 eV), and requires often higher growth temperatures as compared to oxide MBE. Here, we show as a proof of principle that epitaxial TiO2 thin films can be grown on LaAlO3 (001) at a much-reduced deposition temperature of 300 °C by applying a bias voltage with respect to a grounded substrate. The controlled manipulation of ion energies with an applied electric field can allow to bridge the gap in growth conditions between PLD and oxide MBE.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    A. Tselev, R.K. Vasudevan, A.G. Gianfrancesco, L. Qiao, T.L. Meyer, H.N. Lee, M.D. Biegalski, A.P. Baddorf, S.V. Kalinin, Cryst. Growth Des. 16, 2708–2716 (2016)

    Article  Google Scholar 

  2. 2.

    E. Millon, Appl. Surf. Sci. 278, 2 (2013)

    ADS  Article  Google Scholar 

  3. 3.

    C. Aruta, A. Tebano, in Perovskites and Related Mixed Oxides, ed. by P. Granger, V.I. Parvulescu, S. Kaliaguine, W. Prellier (Wiley, New York, 2015), pp. 143–168

    Google Scholar 

  4. 4.

    H.M. Christen, G. Eres, J. Phys. Condens. Matter 20, 264005 (2008)

    ADS  Article  Google Scholar 

  5. 5.

    C. Aruta, S. Amoruso, R. Bruzzese, X. Wang, D. MacCariello, F. Miletto Granozio, U. Scotti Di Uccio, Appl. Phys. Lett. 97, 252105 (2010)

    ADS  Article  Google Scholar 

  6. 6.

    C. Baeumer, C. Xu, F. Gunkel, N. Raab, R.A. Heinen, A. Koehl, R. Dittmann, Sci. Rep. 5, 11829 (2015)

    ADS  Article  Google Scholar 

  7. 7.

    J. Schou, Appl. Surf. Sci. 255, 5191 (2009)

    ADS  Article  Google Scholar 

  8. 8.

    S. Amoruso, V. Berardi, R. Bruzzese, N. Spinelli, X. Wang, Appl. Surf. Sci. 127–129, 953 (1998)

    ADS  Article  Google Scholar 

  9. 9.

    T. Götz, M. Bergt, W. Hoheisel, F. Träger, M. Stuke, Appl. Surf. Sci. 96–98, 280 (1996)

    ADS  Article  Google Scholar 

  10. 10.

    A. Mele, A.G. Guidoni, C. Flamini, A. Latini, S. Orlando, R. Teghil, Proc. Indian Acad. Sci. Chem. Sci. 110, 163 (1998)

    Google Scholar 

  11. 11.

    L. Torrisi, Nukleonika 56, 113 (2011)

    Google Scholar 

  12. 12.

    S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, J. Phys. B At. Mol. Opt. Phys. 32, R131 (1999)

    ADS  Article  Google Scholar 

  13. 13.

    D. Manova, J.W. Gerlach, S. Mändl, Materials (Basel) 3, 4109 (2010)

    ADS  Article  Google Scholar 

  14. 14.

    S. Canulescu, M. Döbeli, X. Yao, T. Lippert, S. Amoruso, J. Schou, Phys. Rev. Mater. 1, 073402 (2017)

    Article  Google Scholar 

  15. 15.

    D.B. Chrisey, G.K. Hubler (eds.), Pulsed Laser Deposition of Thin Films (Wiley, New York, 1994)

    Google Scholar 

  16. 16.

    X. Yao, U. Wiedwald, M. Trautvetter, P. Ziemann, J. Appl. Phys. 115, 023507 (2014)

    ADS  Article  Google Scholar 

  17. 17.

    B. Shin, M.J. Aziz, Phys. Rev. B 76, 085431 (2007)

    ADS  Article  Google Scholar 

  18. 18.

    M.J. Aziz, Appl. Phys. A 93, 579 (2008)

    ADS  Article  Google Scholar 

  19. 19.

    Y.-T. Ho, K.-S. Chang, K.-C. Liu, L.-Z. Hsieh, M.-H. Liang, Cryst. Res. Technol. 48, 308 (2013)

    Article  Google Scholar 

  20. 20.

    A.A. Puretzky, D.B. Geohegan, G.E. Jellison, M.M. McGibbon, Appl. Surf. Sci. 96–9, 859 (1996)

    ADS  Article  Google Scholar 

  21. 21.

    D.H. Lowndes, D.B. Geohegan, A.A. Puretzky, D.P. Norton, Science 273, 898 (1996)

    ADS  Article  Google Scholar 

  22. 22.

    K. Scott, J.M. Huntley, W.A. Phillips, J. Clarke, J.E. Field, Appl. Phys. Lett. 57, 922 (1990)

    ADS  Article  Google Scholar 

  23. 23.

    W. Wu, K.H. Wong, C.L. Mak, C.L. Choy, Y.H. Zhang, J. Vac. Sci. Technol. A Vac. Surf. Film 18, 2412 (2000)

    ADS  Article  Google Scholar 

  24. 24.

    S. Amoruso, C. Aruta, P. Aurino, R. Bruzzese, X. Wang, F.M. Granozio, U. Scotti di Uccio, Appl. Surf. Sci. 258, 9116 (2012)

    ADS  Article  Google Scholar 

  25. 25.

    J. Chen, D. Stender, M. Bator, C.W. Schneider, T. Lippert, A. Wokaun, Appl. Surf. Sci. 278, 317 (2013)

    ADS  Article  Google Scholar 

  26. 26.

    A. Ojeda-G-P, C.W. Schneider, M. Döbeli, T. Lippert, A. Wokaun, Appl. Surf. Sci. 357, 2055 (2015)

    ADS  Article  Google Scholar 

  27. 27.

    J. Krishnaswamy, A. Rengan, J. Narayan, K. Vedam, C.J. McHargue, Appl. Phys. Lett. 54, 2455 (1989)

    ADS  Article  Google Scholar 

  28. 28.

    S. Witanachchi, H.S. Kwok, X.W. Wang, D.T. Shaw, Appl. Phys. Lett. 53, 234 (1988)

    ADS  Article  Google Scholar 

  29. 29.

    P. Patsalas, S. Kaziannis, C. Kosmidis, D. Papadimitriou, G. Abadias, G.A. Evangelakis, J. Appl. Phys. 101, 124903 (2007)

    ADS  Article  Google Scholar 

  30. 30.

    H. Izumi, K. Ohata, T. Hase, K. Suzuki, T. Morishita, S. Tanaka, J. Appl. Phys. 68, 6331 (1990)

    ADS  Article  Google Scholar 

  31. 31.

    E. Hontzopoulos, D. Charalambidis, C. Fotakis, G. Farkas, Z.G. Horváth, C. Tóth, Opt. Commun. 67, 124 (1988)

    ADS  Article  Google Scholar 

  32. 32.

    S.S. Wagal, E.M. Juengerman, C.B. Collins, Appl. Phys. Lett. 53, 187 (1988)

    ADS  Article  Google Scholar 

  33. 33.

    A.A. Voevodin, M.S. Donley, Surf. Coat. Technol. 82, 199 (1996)

    Article  Google Scholar 

  34. 34.

    A.C. Rastogi, S. Tirumala, S.B. Desu, Appl. Phys. Lett. 74, 3492 (1999)

    ADS  Article  Google Scholar 

  35. 35.

    C. Hirose, Y. Matsumoto, Y. Yamamoto, H. Koinuma, Appl. Phys. A 79, 807 (2004)

    ADS  Article  Google Scholar 

  36. 36.

    A. Husmann, M. Mertin, T. Klotzbücher, E.W. Kreutz, Appl. Surf. Sci. 109, 293 (1997)

    ADS  Article  Google Scholar 

  37. 37.

    W.S. Hu, Z.G. Liu, D. Feng, J. Appl. Phys. 80, 7089 (1996)

    ADS  Article  Google Scholar 

  38. 38.

    R.K. Singh, L. Ganapathi, P. Tiwari, J. Narayan, Appl. Phys. Lett. 55, 2351 (1989)

    ADS  Article  Google Scholar 

  39. 39.

    F. Trier, S. Amoruso, D.V. Christensen, A. Sambri, Y.Z. Chen, X. Wang, E. Stamate, R. Bruzzese, N. Pryds, Appl. Phys. Lett. 103, 031607 (2013)

    ADS  Article  Google Scholar 

  40. 40.

    X. Yao, An Insight into the Expansion of Laser Induced Plasmas (ETH Zurich, Zurich, 2018)

    Google Scholar 

  41. 41.

    B.A. Apgar, L.W. Martin, Cryst. Growth Des. 14, 1981 (2014)

    Article  Google Scholar 

  42. 42.

    S. Yamamoto, T. Sumita, A. Miyashita, H. Naramoto, Thin Solid Films 401, 88 (2001)

    ADS  Article  Google Scholar 

  43. 43.

    S. Chambers, C. Wang, S. Thevuthasan, T. Droubay, D. McCready, A. Lea, V. Shutthanandan, C. Windisch Jr., Thin Solid Films 418, 197 (2002)

    ADS  Article  Google Scholar 

  44. 44.

    A. Lotnyk, S. Senz, D. Hesse, Thin Solid Films 515, 3439 (2007)

    ADS  Article  Google Scholar 

  45. 45.

    S. Rout, N. Popovici, S. Dalui, M.L. Paramês, R.C. da Silva, A.J. Silvestre, O. Conde, Curr. Appl. Phys. 13, 670 (2013)

    ADS  Article  Google Scholar 

  46. 46.

    J. Chen, J.G. Lunney, T. Lippert, A. Ojeda-G-P, D. Stender, C.W. Schneider, A. Wokaun, J. Appl. Phys. 116, 073303 (2014)

    ADS  Article  Google Scholar 

  47. 47.

    J. Chen, D. Stender, K. Conder, A. Wokaun, C.W. Schneider, T. Lippert, Appl. Phys. Lett. 105, 114104 (2014)

    ADS  Article  Google Scholar 

  48. 48.

    K. Zakrzewska, Adv. Mater. Sci. Eng. 2012, 1 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by SNF (Project No. 200021_134577) and the Paul Scherrer Institute.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Christof W. Schneider or Thomas Lippert.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yao, X., Schneider, C.W., Lippert, T. et al. Manipulation of ion energies in pulsed laser deposition to improve film growth. Appl. Phys. A 125, 344 (2019). https://doi.org/10.1007/s00339-019-2644-3

Download citation