Numerical study of three-body diamond abrasive nanoindentation of single-crystal Si by molecular dynamics simulation

Abstract

Exploring the accuracy of nanoindentation testing is especially important for determining the hardness and Young’s modulus values of materials. In this paper, molecular dynamics simulation was used to study the nanoindentation mechanism of three-body diamond abrasive grains rotating at various speeds on single-crystal silicon materials. An in-depth study of the three-body diamond abrasive nanoindentation single-crystal Si process, indentation stress, dislocation, crack propagation, coordination number, defect atoms, load, nanoindentation zone temperature, and potential energy changes is made. The results mean that the smaller the speed of rotation of the three-body abrasive grains, the greater the stress in all directions, and the more the dislocations that can be easily observed inside the workpiece. Moreover, the greater the rotational speed of the abrasive grains, the smaller the number of Si-II phase transitions in the workpiece; the number of defective atoms inside the workpiece after the three-body abrasive nanoindentation is greater than that in the case of two-body abrasive nanoindentation. In addition, the faster the abrasive grain rotation, the higher the temperature of the workpiece nanoindentation zone, the larger the potential energy, the more obvious the atomic motion inside the workpiece, and the greater the atomic motion inside the workpiece is biased toward the direction of rotation. In addition, the faster the grain rotation in three-body nanoindentation, the smaller the average load on the workpiece.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    M. Ge, H. Zhu, C. Huang et al., Investigation on critical crack-free cutting depth for single-crystal silicon slicing with fixed abrasive wire saw based on the scratching machining experiments. Mater. Sci. Semicond. Process. 74, 261–266 (2018)

    Article  Google Scholar 

  2. 2.

    J. Ruckman, H. Pollicove, D. Golini, Advanced manufacturing generates conformal optics: optoelectronics world: optics. Laser focus world 35(7), S13–S15 (1999)

    Google Scholar 

  3. 3.

    T. Saga, Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Mater. 2, 96–102 (2010)

    Article  Google Scholar 

  4. 4.

    B. Guo, Q. Zhao, X. Fang, Precision grinding of optical glass with laser micro-structured coarse-grained diamond wheels. J. Mater. Process. Technol. 214(5), 1045–1051 (2014)

    Article  Google Scholar 

  5. 5.

    B. Liang, Y. Liu, Y. Xu, Silicon-based materials as high capacity anodes for next generation lithium ion batteries. J. Power Sour. 267, 469–490 (2014)

    ADS  Article  Google Scholar 

  6. 6.

    Y. Xiao, C. Chen, S. Cao et al., Enhanced sunlight-driven photocatalytic activity of graphene oxide/Bi2WO6 nanoplates by silicon modification. Ceram. Int. 41(8), 10087–10094 (2015)

    Article  Google Scholar 

  7. 7.

    Y. Liu, Z. Tai, T. Zhou et al., An all-integrated anode via interlinked chemical bonding between double-Shelled–Yolk-structured silicon and binder for lithium-ion batteries. Adv. Mater. 29(44), 1703028 (2017)

    Article  Google Scholar 

  8. 8.

    W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564–1583 (1992)

    ADS  Article  Google Scholar 

  9. 9.

    J. Jang, G.M. Pharr, Influence of indenter angle on cracking in Si and Ge during nanoindentation. Acta Mater. 56(16), 4458–4469 (2008)

    Article  Google Scholar 

  10. 10.

    S.R. Jian, Mechanical deformation induced in Si and GaN under Berkovich nanoindentation. Nanoscale Res. Lett. 3(1), 6 (2008)

    ADS  Article  Google Scholar 

  11. 11.

    W. Yu, C.Y. Niu, Z. Zhu et al., Atomically thin binary V–V compound semiconductor: a first-principles study. J. Mater. Chem. C 4(27), 6581–6587 (2016)

    Article  Google Scholar 

  12. 12.

    D.K. Mishra, M. Meraj, S.K. BadJena et al., Dislocation interaction and V-shaped growth of the distorted structure during nanoindentation of Cu20Ni20Al20Co20Fe20 (high-entropy alloy)-coated copper: a molecular dynamics simulation-based study. Trans. Indian Inst. Met. 72(1), 167–180 (2019)

    Article  Google Scholar 

  13. 13.

    T. Fu, X. Peng, Y. Zhao et al., Molecular dynamics simulation of TiN (001) thin films under indentation. Ceram. Int. 41(10), 14078–14086 (2015)

    Article  Google Scholar 

  14. 14.

    S. Jiao, Q. Huang, W. Tu et al., Investigation on the phase transformation of monocrystalline silicon during nanoindentation at cryogenic temperature by molecular dynamics simulation. Physica B 555, 139–144 (2019)

    ADS  Article  Google Scholar 

  15. 15.

    S. Jiapeng, L. Cheng, J. Han et al., Nanoindentation induced deformation and pop-in events in a silicon crystal: molecular dynamics simulation and experiment. Sci. Rep. 7(1), 10282 (2017)

    ADS  Article  Google Scholar 

  16. 16.

    Z. Zhang, A. Stukowski, H.M. Urbassek, Interplay of dislocation-based plasticity and phase transformation during Si nanoindentation. Comput. Mater. Sci. 119, 82–89 (2016)

    Article  Google Scholar 

  17. 17.

    T. Fu, X. Peng, X. Chen et al., Molecular dynamics simulation of nanoindentation on Cu/Ni nanotwinned multilayer films using a spherical indenter. Sci. Rep. 6, 35665 (2016)

    ADS  Article  Google Scholar 

  18. 18.

    T. Fu, X. Peng, Y. Zhao et al., MD simulation of effect of crystal orientations and substrate temperature on growth of Cu/Ni bilayer films. Appl. Phys. A 122(2), 67 (2016)

    ADS  Article  Google Scholar 

  19. 19.

    Y. Pang, M. Springborg, Atomistic simulation of nanoindentation using the DFTB method. Comput. Mater. Sci. 118, 203–213 (2016)

    Article  Google Scholar 

  20. 20.

    Q. Zhao, Q. Zhang, S. To et al., Surface damage mechanism of monocrystalline Si under mechanical loading. J. Electron. Mater. 46(3), 1862–1868 (2017)

    ADS  Article  Google Scholar 

  21. 21.

    S. Wang, H. Liu, L. Xu et al., Investigations of phase transformation in monocrystalline silicon at low temperatures via nanoindentation. Sci. Rep. 7(1), 8682 (2017)

    ADS  Article  Google Scholar 

  22. 22.

    S. Goel, N.H. Faisal, X. Luo et al., Nanoindentation of polysilicon and single crystal silicon: molecular dynamics simulation and experimental validation. J. Phys. D Appl. Phys. 47(27), 275304 (2014)

    Article  Google Scholar 

  23. 23.

    Y.H. Lin, T.C. Chen, A molecular dynamics study of phase transformations in mono-crystalline Si under nanoindentation. Appl. Phys. A 92(3), 571 (2008)

    ADS  Article  Google Scholar 

  24. 24.

    J. Sun, L. Fang, J. Han et al., Phase transformations of mono-crystal silicon induced by two-body and three-body abrasion in nanoscale. Comput. Mater. Sci. 82, 140–150 (2014)

    Article  Google Scholar 

  25. 25.

    J. Han, J. Sun, S. Xu et al., Deformation mechanisms at multiple pop-ins under spherical nanoindentation of (1 1 1) Si. Comput. Mater. Sci. 143, 480–485 (2018)

    Article  Google Scholar 

  26. 26.

    J. Shi, X. Wei, J. Chen et al., Influence of abrasive shape on the abrasion and phase transformation of monocrystalline silicon. Crystals 8(1), 32 (2018)

    Article  Google Scholar 

  27. 27.

    L.C. Zhang, H. Tanaka, On the mechanics and physics in the nanoindentation of silicon monocrystals. JSME Int. J. Ser. A Solid Mech. Mater. Eng. 42(4), 546–559 (1999)

    ADS  Article  Google Scholar 

  28. 28.

    Y. Wang, S. Ruffell, K. Sears, A.P. Knights, J.E. Bradby, J.S. Williams, Electrical properties of Si-XII and Si-III formed by nanoindentation. In 2010 Conference on Optoelectronic and Icroelectronic Materials and Devices (COMMAD) (2010)

  29. 29.

    L. Zhang, H. Zhao, Y. Yang et al., Evaluation of repeated single-point diamond turning on the deformation behavior of monocrystalline silicon via molecular dynamic simulations. Appl. Phys. A 116(1), 141–150 (2014)

    ADS  Article  Google Scholar 

  30. 30.

    J.J. Gilman, Mechanism of shear-induced metallization. Czech J. Phys. 45(11), 913–919 (1995)

    ADS  Article  Google Scholar 

  31. 31.

    R.W. Cahn, Metallic solid silicon. Nature 357(6380), 645 (1992)

    ADS  Article  Google Scholar 

  32. 32.

    D. Chrobak, N. Tymiak, A. Beaber, O. Ugurlu, W.W. Gerberich, R. Nowak, Deconfinement leads to changes in the nanoscale plasticity of silicon. Nat. Nano 6(8), 480–484 (2011)

    Article  Google Scholar 

  33. 33.

    G.L.W. Cross, Silicon nanoparticles: isolation leads to change. Nat. Nano 6(8), 467–468 (2011)

    Article  Google Scholar 

  34. 34.

    W. Liu, Y. Wang, Y. Ma et al., Nanoindentation study on micromechanical behaviors of Au–Ni–Sn intermetallic layers in Au–20Sn/Ni solder joints. Mater. Sci. Eng. A 653, 13–22 (2016)

    Article  Google Scholar 

  35. 35.

    X. Zhou, B. Ouyang, W.A. Curtin et al., Atomistic investigation of the influence of hydrogen on dislocation nucleation during nanoindentation in Ni and Pd. Acta Mater. 116, 364–369 (2016)

    Article  Google Scholar 

  36. 36.

    M. Arif, M. Rahman, W.Y. San, Analytical model to determine the critical conditions for the modes of material removal in the milling process of brittle material. J. Mater. Process. Technol. 212(9), 1925–1933 (2012)

    Article  Google Scholar 

  37. 37.

    J. Chen, Q. Fang, P. Li, Effect of grinding wheel spindle vibration on surface roughness and subsurface damage in brittle material grinding. Int. J. Mach. Tools Manuf. 91, 12–23 (2015)

    Article  Google Scholar 

  38. 38.

    E. Bitzek, P. Gumbsch, Atomistic simulations of dislocation-crack interaction. J. Solid Mech. Mater. Eng. 2(10), 1348–1359 (2008)

    MATH  Article  Google Scholar 

  39. 39.

    H. Dai, S. Li, G. Chen, Molecular dynamics simulation of subsurface damage mechanism during nanoscratching of single crystal silicon. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 233(1), 61–73 (2019). https://doi.org/10.1177/1350650118765351

    Article  Google Scholar 

  40. 40.

    C.S. Moura, L. Amaral, Molecular dynamics simulation of silicon nanostructures. Nucl. Instrum. Methods Phys. Res. Sect. B 228(1–4), 37–40 (2005)

    ADS  Article  Google Scholar 

  41. 41.

    J. Tersoff, New empirical model for the structural properties of silicon. Phys. Rev. Lett. 56(6), 632 (1986)

    ADS  Article  Google Scholar 

  42. 42.

    F.H. Stillinger, T.A. Weber, Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31(8), 5262 (1985)

    ADS  Article  Google Scholar 

  43. 43.

    S. Goel, X. Luo, R.L. Reuben, Wear mechanism of diamond tools against single-crystal silicon in single point diamond turning process. Tribol. Int. 57, 272–281 (2013)

    Article  Google Scholar 

  44. 44.

    W.C.D. Cheong, L.C. Zhang, Molecular dynamics simulation of phase transformations in silicon monocrystals due to nanoindentation. Nanotechnology 11(3), 173 (2000)

    ADS  Article  Google Scholar 

  45. 45.

    Y. Wang, J. Shi, C. Ji, A numerical study of residual stress induced in machined silicon surfaces by molecular dynamics simulation. Appl. Phys. A 115(4), 1263–1279 (2014)

    ADS  Article  Google Scholar 

  46. 46.

    M.B. Cai, X.P. Li, M. Rahman, Study of the temperature and stress in nanoscale ductile mode cutting of silicon using molecular dynamics simulation. J. Mater. Process. Technol. 192, 607–612 (2007)

    Article  Google Scholar 

  47. 47.

    D.E. Kim, S.I. Oh, Atomistic simulation of structural phase transformations in monocrystalline silicon induced by nanoindentation. Nanotechnology 17(9), 2259 (2006)

    ADS  Article  Google Scholar 

  48. 48.

    R. Komanduri, N. Chandrasekaran, L.M. Raff, Molecular dynamics simulation of the nanometric cutting of silicon. Philos. Mag. B 81(12), 1989–2019 (2001)

    ADS  Article  Google Scholar 

  49. 49.

    K. Mylvaganam, L.C. Zhang, P. Eyben et al., Evolution of metastable phases in silicon during nanoindentation: mechanism analysis and experimental verification. Nanotechnology 20(30), 305705 (2009)

    Article  Google Scholar 

  50. 50.

    R.G. Jasinevicius, J.G. Duduch, P.S. Pizani, Structure evaluation of submicrometre silicon chips removed by diamond turning. Semicond. Sci. Technol. 22(5), 561 (2007)

    ADS  Article  Google Scholar 

  51. 51.

    H. Dai, G. Chen, C. Zhou et al., A numerical study of ultraprecision machining of mono-crystalline silicon with laser nano-structured diamond tools by atomistic simulation. Appl. Surf. Sci. 393, 405–416 (2017)

    ADS  Article  Google Scholar 

  52. 52.

    J. Sarkar, D.K. Das, Nanoindentation study of mechanical behavior and response of a single layer pristine silicene sheet using molecular dynamics simulations. Comput. Mater. Sci. 147, 64–71 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to appreciate the fund project for the introduction of talents in Guizhou University (No. [2017]24), Guizhou Province Education Department Youth Science and Technology Talent Growth Project (No. [2018]110), and National Natural Science Foundation cultivation project for young teachers of Guizhou University (No. [2017]5788).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Houfu Dai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dai, H., Zhang, F., Zhou, Y. et al. Numerical study of three-body diamond abrasive nanoindentation of single-crystal Si by molecular dynamics simulation. Appl. Phys. A 125, 348 (2019). https://doi.org/10.1007/s00339-019-2643-4

Download citation