Fabrication of reduced graphene oxide/CeO2 nanocomposite for enhanced electrochemical performance

Abstract

A facile hydrothermal technique was utilized for the preparation of the CeO2/rGO nanocomposite. X-ray diffraction pattern was used to identify the crystal structure and calculate the crystallite size of the prepared samples. The average crystallite sizes for CeO2 and rGO/CeO2 nanocomposites were calculated to be 14 and 12 nm, respectively. The spectral analysis confirmed the functional groups of CeO2 nanoparticles and CeO2/rGO nanocomposites. The presence of G and D band peaks as well as the CeO2 and CeO2/rGO peaks was confirmed by the FT-Raman analysis. The optical characterization of the synthesized sample was also examined with the help of UV–visible absorption and photoluminescence spectra. The surface morphology of the prepared sample was analyzed by the scanning electron microscope and transmission electron microscopy. The energy-dispersive X-ray spectroscopy analysis confirmed the existence of cerium, oxygen and carbon as the elementary components in the nanocomposite. The electrical properties such as the dielectric constant, the dielectric loss and the AC conductivity were also analyzed. The observed specific capacitances for the CeO2/rGO composite and that of pure CeO2 NPs were calculated as 89 Fg−1 and 77 Fg−1, respectively. Thus, CeO2/rGO nanocomposites can exhibit excellent capacitive performance and thereby serve as a promising anode material for supercapacitor applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    H.L. Wang, L.F. Cui, Y. Yang, H.S. Casalongue, J.T. Robinson, Y.Y. Liang, Y. Cui, H.J. Dai, J. Am. Chem. Soc. 132, 13978–13980 (2010)

    Article  Google Scholar 

  2. 2.

    N.R. Wilson, P.A. Pandey, R. Beanland, R.G. Young, I.A. Kinloch, L. Gong, K. Suenag, J.P. Rourke, J.P. York, J. Sloan, ACS Nano 3, 2547–2556 (2009)

    Article  Google Scholar 

  3. 3.

    C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Angew. Chem. Int. Ed. 48, 7752–7777 (2009)

    Article  Google Scholar 

  4. 4.

    S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282–286 (2006)

    ADS  Article  Google Scholar 

  5. 5.

    S. Park, R.S. Ruoff, Nat. Nanotechnol. 4(217–224), 10 (2009)

    Google Scholar 

  6. 6.

    D. Joung, A. Chunder, L. Zhai, S.I. Khondaker, Nanotechnology 21, 165202-1–165202-5 (2010)

    ADS  Article  Google Scholar 

  7. 7.

    A. Chunder, T. Pal, S.I. Khondaker, L. Zhai, J. Phys. Chem. C 114, 15129–15135 (2010)

    Article  Google Scholar 

  8. 8.

    C. Xu, X. Wang, J. Zhu, J. Phys. Chem. 112, 19841–19845 (2008)

    Google Scholar 

  9. 9.

    R. Pasricha, S. Gupta, A.K. Srivastava, Small 5, 2253–2259 (2009)

    Article  Google Scholar 

  10. 10.

    G.M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, R. Mulhaupt, J. Am. Chem. Soc. 131, 8262–8270 (2009)

    Article  Google Scholar 

  11. 11.

    Z.-L. Hu, M. Aizawa, Z.-M. Wang, N. Yoshizawa, H. Hatori, Langmuir 26, 6681–6688 (2010)

    Article  Google Scholar 

  12. 12.

    Y. Lin, K. Zhang, W. Chen, Y. Liu, Z. Geng, J. Zeng, N. Pan, L. Yan, X. Wang, J.G. Hou, ACS Nano 4, 3033–3038 (2010)

    Article  Google Scholar 

  13. 13.

    A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, Y. Liu, Adv. Mater. 22, 103–106 (2010)

    Article  Google Scholar 

  14. 14.

    P.V. Kamat, G. Williams, Langmuir 25, 13869–13873 (2009)

    Article  Google Scholar 

  15. 15.

    I.V. Lightcap, T.H. Kosel, P.V. Kamat, Nano Lett. 10, 577–583 (2010)

    ADS  Article  Google Scholar 

  16. 16.

    G. Williams, B. Seger, P.V. Kamat, ACS Nano 2, 1487–1491 (2008)

    Article  Google Scholar 

  17. 17.

    H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, ACS Nano 4, 380–386 (2009)

    Article  Google Scholar 

  18. 18.

    L. Xu, W.Q. Huang, L.L. Wang, G.F. Huang, A.C.S. Appl, Mater. Interfaces 6, 20350 (2014)

    Article  Google Scholar 

  19. 19.

    M. Srivastava, A.K. Das, P. Khanra, M.E. Uddin, N.H. Kim, J.H. Lee, J. Mater. Chem. C 1, 9792 (2013)

    Article  Google Scholar 

  20. 20.

    Z.Y. Ji, X.P. Shen, M.Z. Li, H. Zhou, G.X. Zhu, K. Chen, Nanotechnology 24, 115603 (2013)

    ADS  Article  Google Scholar 

  21. 21.

    L.H. Jiang, M.G. Yao, B. Liu, Q.J. Li, R. Liu, H. Lv, S.C. Lu, C. Gong, B. Zou, T. Cui, B.B. Liu, J. Phys. Chem. C 116, 11741 (2012)

    Article  Google Scholar 

  22. 22.

    M. Srivastava, A.K. Das, P. Khanra, M.E. Uddin, N.H. Kim, J.H. Lee, J. Mater. Chem. A 1, 9792–9801 (2013)

    Article  Google Scholar 

  23. 23.

    P.K. Gupta, S. Tiwari, Z.H. Khan, P.R. Solanki, J. Mater. Chem. B 5, 2019–2033 (2017)

    Article  Google Scholar 

  24. 24.

    S. Sagadevan, Z.Z. Chowdhury, M.R.B. Johan, R.F. Rafique, Mater. Res. Express 5, 035014 (2018)

    ADS  Article  Google Scholar 

  25. 25.

    S. Kumar, A.K. Ojha, Mater. Chem. Phys. 171, 126–136 (2016)

    Article  Google Scholar 

  26. 26.

    E. Swatsitang, S. Phokha, S. Hunpratub, S. Maensiri, Mater. Des. 108, 27–33 (2016)

    Article  Google Scholar 

  27. 27.

    Y. Wen, H. Ding, Y. Shan, Nanoscale 3, 4411–4417 (2011)

    ADS  Article  Google Scholar 

  28. 28.

    S. Kumar, A.K. Ojha, J. Photochem. Photobiol. B Biol. 159, 111–119 (2016)

    Article  Google Scholar 

  29. 29.

    S.J. Yang, S. Nam, T. Kim, J.H. Im, H. Jung, J.H. Kang, S. Wi, B. Park, C.R. Park, J. Am. Chem. Soc. 135, 7394–7397 (2013)

    Article  Google Scholar 

  30. 30.

    S.K. Alla, E.V.P. Komarala, R.K. Mandal, N.K. Prasad, Mater. Chem. Phys. 182, 280–286 (2016)

    Article  Google Scholar 

  31. 31.

    T. Xu, L. Zhang, H. Cheng, Y. Zhu, Appl. Catal. B Environ. 101, 382–387 (2011)

    Article  Google Scholar 

  32. 32.

    H. Huang et al., Mater. Chem. A 2, 20118 (2014)

    Article  Google Scholar 

  33. 33.

    C.W. Sun, H. Li, H.R. Zhang, Z.X. Wang, L.Q. Chen, Nanotechnology 16, 1454–1463 (2005)

    Article  Google Scholar 

  34. 34.

    J.S. Bradley, B. Tesche, W. Busser, M. Maase, M.T. Reetz, J. Am. Chem. Soc. 122, 4631–4636 (2000)

    Article  Google Scholar 

  35. 35.

    G. Wang, Q. Mu, T. Chen, Y. Wang, J. Alloys Compd. 493, 202–207 (2010)

    Article  Google Scholar 

  36. 36.

    Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo, Y. Chen, Carbon 45, 821 (2007)

    Article  Google Scholar 

  37. 37.

    X. Bai, Y. Zhai, Y. Zhang, J. Phys. Chem. C 115, 11673 (2011)

    Article  Google Scholar 

  38. 38.

    H.J. Yang, W.Q. Cao, D.Q. Zhang, T.J. Su, H.L. Shi, W.Z. Wang, J. Yuan, M.S. Cao, A.C.S. Appl, Mater. Interfaces 7, 7073 (2015)

    Article  Google Scholar 

  39. 39.

    S. Sagadevan, Z.Z. Chowdhury, M.R.B. Johan, F.A. Aziz, E.M. Salleh, A. Hawa, R.F. Rafique, J. Exp. Nanosci. 13(1), 302–313 (2018)

    Article  Google Scholar 

  40. 40.

    S. Sagadevan, K. Pal, E. Hoque, Z.Z. Chowdhury, J. Mater. Sci. Mater. Electron. 28, 10902–10908 (2017)

    Article  Google Scholar 

  41. 41.

    S. Sagadevan, Z.Z. Chowdhury, M.E. Hoque, Mater. Res. Express. 4, 115031 (2017)

    ADS  Article  Google Scholar 

  42. 42.

    S. Sagadevan, K. Pal, Z.Z. Chowdhury, J Alloys Compd. 728, 645–654 (2017)

    Article  Google Scholar 

  43. 43.

    C.Z. Yuan, X.G. Zhang, L.H. Su, B. Gao, L.F. Shen, J. Mater. Chem. 19, 5772–5777 (2009)

    Article  Google Scholar 

  44. 44.

    H.W. Wang, Z.A. Hu, Y.Q. Chang, Y.L. Chen, H.Y. Wu, Z.Y. Zhang, Y.Y. Yang, J. Mater. Chem. 21, 10504–10511 (2011)

    Article  Google Scholar 

  45. 45.

    S. Sagadevan, Z.Z. Chowdhury, M.R.B. Johan, A.A. Khan, F.A. Aziz, R. Rafique, PLoS One 13(10), e0202694 (2018)

    Article  Google Scholar 

  46. 46.

    H.C. Gao, F. Xiao, C.B. Ching, H.W. Duan, A.C.S. Appl, Mater. Interfaces 4, 2801 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (Suresh Sagadevan) acknowledges the honor of being a “Senior Research Fellow” at Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia. The author wishes to place on record his heartfelt thanks that are due to the authorities concerned.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Suresh Sagadevan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sagadevan, S., Johan, M.R. & Lett, J.A. Fabrication of reduced graphene oxide/CeO2 nanocomposite for enhanced electrochemical performance. Appl. Phys. A 125, 315 (2019). https://doi.org/10.1007/s00339-019-2625-6

Download citation