Rare-earth (La3+) substitution induced changes in the structural, dielectric and magnetic properties of nano-CoFe2O4 for high-frequency and magneto-recording devices

Abstract

Influence of Fe substitutions by rare-earth (La3+) ions on structural, electric, dielectric and magnetic properties of cobalt ferrite employing glycine nitrate method is investigated. The FTIR spectra and Mossbauer spectroscopy measurements illustrate spinel phase formation of CoFe2−xLaxO4 nanoferrites supporting structural analysis from X-ray diffraction patterns. Magnetic analysis revealed that with increasing La concentration to 0.1, the coercivity and squareness values increased from 1958 to 3312 Oe, and 0.52–0.57, respectively. To obtain accuracy in the saturation magnetization values, a theoretical approach was used considering the ferromagnetic (FM) and antiferromagnetic/paramagnetic (AFM/PM) components. Dielectric measurements studied in the range of 100 Hz–1 MHz frequency from room temperature to 300 °C indicated enhanced dielectric constant with low loss on increasing La3+ concentration. The ferrite nanoparticles with improved magnetic and dielectric properties make these materials suitable for magneto-recording and high-frequency devices.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    G. Bate, J. Magn. Magn. Mater. 100(1–3), 413 (1991)

    ADS  Article  Google Scholar 

  2. 2.

    D. Carta, M.F. Casula, A. Falqui, D. Loche, G. Mountjoy, C. Sangregorio, A. Corrias, J. Phys. Chem. C 113(20), 8606 (2009)

    Article  Google Scholar 

  3. 3.

    G. Hu, J.H. Choi, C.B. Eom, V.G. Harris, Y. Suzuki, Phys. Rev. B Condens. Matter Mater. Phys. 62(2), R779 (2000)

    ADS  Article  Google Scholar 

  4. 4.

    K. Maaz, A. Mumtaz, S.K. Hasanain, A. Ceylan, J. Magn. Magn. Mater. 308(2), 289 (2007)

    ADS  Article  Google Scholar 

  5. 5.

    C. Liu, B. Zou, A.J. Rondinone, Z.J. Zhang, J. Am. Chem. Soc. 122(26), 6263 (2000)

    Article  Google Scholar 

  6. 6.

    C. Murugesan, M. Perumal, G. Chandrasekaran, Phys. B 448, 53 (2014)

    ADS  Article  Google Scholar 

  7. 7.

    B.G. Toksha, S.E. Shirsath, M.L. Mane, K.M. Jadhav, Ceram. Int. 43(16), 14347 (2017)

    Article  Google Scholar 

  8. 8.

    D.K. Pradhan, S. Kumari, V.S. Puli, P.T. Das, D.K. Pradhan, A. Kumar, J.F. Scott, R.S. Katiyar, Phys. Chem. Chem. Phys. 19(1), 210 (2017)

    Article  Google Scholar 

  9. 9.

    S. Anjum, F. Sehar, M.S. Awan, R. Zia, Appl. Phys. A 122(4), 436 (2016)

    ADS  Article  Google Scholar 

  10. 10.

    F. Falsafi, B. Hashemi, A. Mirzaei, E. Fazio, F. Neri, N. Donato, S.G. Leonardi, G. Neri, Ceram. Int. 43(1), 1029 (2017)

    Article  Google Scholar 

  11. 11.

    X. Meng, H. Li, J. Chen, L. Mei, K. Wang, X. Li, J. Magn. Magn. Mater. 321(9), 1155 (2009)

    ADS  Article  Google Scholar 

  12. 12.

    Z.M. Lu, Z.W. Li, J. Shen, F.B. Meng, H.Y. Liu, Y.X. Li, C.Y. Li, J. Appl. Phys. 105(7), 07A519 (2009)

    Article  Google Scholar 

  13. 13.

    D.S. Nikam, S.V. Jadhav, V.M. Khot, R.A. Bohara, C.K. Hong, S.S. Mali, S.H. Pawar, RSC Adv. 5(3), 2338–2345 (2015)

    Article  Google Scholar 

  14. 14.

    K.L. Routray, D. Sanyal, D. Behera, J. Appl. Phys. 122(22), 224104 (2017)

    ADS  Article  Google Scholar 

  15. 15.

    K.L. Routray, D. Behera, J. Mater. Sci. Mater. El. 29(16), 14248 (2018)

    Article  Google Scholar 

  16. 16.

    S.E. Jacobo, S.D. Uhalde, H.R. Bertorello, J. Magn. Magn. Mater. 272, 2253 (2004)

    ADS  Article  Google Scholar 

  17. 17.

    J. Peng, M. Hojamberdiev, Y. Xu, B. Cao, J. Wang, H. Wu, J. Magn. Magn. Mater. 323(1), 133 (2011)

    ADS  Article  Google Scholar 

  18. 18.

    S. Imine, F. Schoenstein, S. Mercone, M. Zaghrioui, N. Bettahar, N. Jouini, J. Eur. Ceram. Soc. 31(15), 2943 (2011)

    Article  Google Scholar 

  19. 19.

    J.H. Lee, C.K. Kim, S. Katoh, R. Murakami, J. Alloys Compd 325, 276 (2001)

    Article  Google Scholar 

  20. 20.

    J. Jiang, Y.M. Yang, L.C. Li, Phys. B 399, 105 (2007)

    ADS  Article  Google Scholar 

  21. 21.

    A. Verma, T.C. Goel, R.G. Mendiratta, M.I. Alam, Mater. Sci. Eng., B 60, 156 (1999)

    Article  Google Scholar 

  22. 22.

    A. Sutka, G. Mezinskis, Front. Mater. Sci. 6(2), 128 (2012)

    Article  Google Scholar 

  23. 23.

    A.L. Patterson, Phys. Rev. 56(10), 978 (1939)

    ADS  Article  Google Scholar 

  24. 24.

    Y.I. Kim, D. Kim, C.S. Lee, Phys. B 337(1–4), 42 (2003)

    ADS  Article  Google Scholar 

  25. 25.

    G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1958)

    Article  Google Scholar 

  26. 26.

    V. Senthilkumar, P. Vickraman, M. Jayachandran, C. Sanjeeviraja, J. Mater. Sci. Mater. El. 21(4), 343 (2010)

    Article  Google Scholar 

  27. 27.

    S. Hafner, Ordnung/unordnung und ultrarotabsorption IV. Cryst. Mater. 115(1–6), 331 (1961)

    Google Scholar 

  28. 28.

    R.D. Waldron, Phys. Rev. 99, 1727 (1955)

    ADS  Article  Google Scholar 

  29. 29.

    J. Azadmanjiri, Mater. Chem. Phys. 109, 109 (2008)

    Article  Google Scholar 

  30. 30.

    M.L. Kahn, Z. John, Z. Zhang, Appl. Phys. Lett. 78, 3651 (2001)

    ADS  Article  Google Scholar 

  31. 31.

    L. Kumar, M. Kar, Ceram. Int. 38(6), 4771 (2012)

    Article  Google Scholar 

  32. 32.

    M. Vadivel, R.R. Babu, P. Selvakumar, M. Arivanandhan, K. Ramamurthi, Recent Trends in Materials Science and Applications (Springer, Cham, 2017), p. 179

    Google Scholar 

  33. 33.

    X. Zhao, W. Wang, Y. Zhang, S. Wu, F. Li, J.P. Liu, Chem. Eng. J. 250, 164 (2014)

    Article  Google Scholar 

  34. 34.

    R.H. Kodama, J. Magn. Magn. Mater. 200(1–3), 359 (1999)

    ADS  Article  Google Scholar 

  35. 35.

    J.H. Rodriguez, H.N. Ok, Y.M. Xia, P.G. Debrunner, B.E. Hinrichs, T. Meyer, N.H. Packard, J. Phys. Chem. 100(16), 6849 (1996)

    Article  Google Scholar 

  36. 36.

    G. Datt, M.S. Bishwas, M.M. Raja, A.C. Abhyankar, Nanoscale 8(9), 5200 (2016)

    ADS  Article  Google Scholar 

  37. 37.

    C.G. Koops, Phys. Rev. 83, 121 (1951)

    ADS  Article  Google Scholar 

  38. 38.

    S.S. Jadhav, S.E. Shirsath, B.G. Toksha, S.M. Patange, D.R. Shengule, K.M. Jadhav, Phys. B 405(12), 2610 (2010)

    ADS  Article  Google Scholar 

  39. 39.

    S. Amiri, H. Shokrollahi, J. Magn. Magn. Mater. 345, 18 (2013)

    ADS  Article  Google Scholar 

  40. 40.

    J.C. Maxwell, 1, 828 (1973)

  41. 41.

    R.K. Panda, D. Behera, J. Alloy. Comp. 587, 481 (2014)

    Article  Google Scholar 

  42. 42.

    S. Chakrabarty, A. Dutta, M. Pal, Electrochim. Acta 184, 70 (2015)

    Article  Google Scholar 

  43. 43.

    A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983)

    Google Scholar 

  44. 44.

    J.S. Kim, I.W. Kim, C.W. Ahn, T.K. Song, S.S. Kim, S.X. Chi, J.S. Bae, J.H. Jeong, Jpn. J. Appl. Phys. 41, 6785 (2002)

    ADS  Article  Google Scholar 

  45. 45.

    M.A. Rahman, A.A. Hossain, Phys. Scr. 89, 025803 (2014)

    ADS  Article  Google Scholar 

  46. 46.

    R. Richert, H. Wagner, Solid State Ion. 105, 167 (1998)

    Article  Google Scholar 

  47. 47.

    N. Chihaoui, R. Dhahri, M. Bejar, E. Dharhi, L.C. Costa, M.P.F. Graça, Solid State Commun. 151(19), 1331 (2011)

    ADS  Article  Google Scholar 

  48. 48.

    M. Ganguli, M.H. Bhat, K.J. Raol, Phys. Chem. Glasses 40(6), 297 (1999)

    Google Scholar 

  49. 49.

    S. Lanfredi, P.S. Saia, R. Lebullenger, A.C. Hernandes, Solid State Ionics 146(3–4), 329 (2002)

    Article  Google Scholar 

  50. 50.

    K.P. Padmasree, D.D. Kanchan, A.R. Kulkami, Solid State Ion. 177, 475 (2006)

    Article  Google Scholar 

  51. 51.

    A. Dutta, T.P. Sinha, J. Phys. Chem. Solids 67, 1484 (2006)

    ADS  Article  Google Scholar 

  52. 52.

    S.T. Assar, H.F. Abosheiasha, M.K. El Nimr, J. Magn. Magn. Mater. 350, 12 (2014)

    ADS  Article  Google Scholar 

  53. 53.

    S.R. Mohapatra, B. Sahu, M. Chandrasekhar, P. Kumar, S.D. Kaushik, S. Rath, A.K. Singh, Ceram. Int. 42, 12352 (2016)

    Article  Google Scholar 

  54. 54.

    A. Shukla, R.N.P. Choudhary, A.K. Thakur, J. Phys. Chem. Solids 70, 1401 (2009)

    ADS  Article  Google Scholar 

  55. 55.

    D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)

    ADS  Article  Google Scholar 

  56. 56.

    J. Kolte, A.S. Daryapurkar, D.D. Gulwade, P. Gopalan, Ceram. Int. 42, 12914 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Ms. Krutika L. Routray acknowledges Department of Science & Technology, India, for fellowship Grants under INSPIRE scheme with sanction number DST/INSPIRE Fellowship/2014/IF140812 during her research work. Magnetisation study has been supported by VSM, DST, India, project code “EMR/2014/000341. We would like to acknowledge Dr. Dirtha Sanyal, VECC, Kolkata, for Mossbauer spectroscopy measurements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dhrubananda Behera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Routray, K.L., Saha, S. & Behera, D. Rare-earth (La3+) substitution induced changes in the structural, dielectric and magnetic properties of nano-CoFe2O4 for high-frequency and magneto-recording devices. Appl. Phys. A 125, 328 (2019). https://doi.org/10.1007/s00339-019-2615-8

Download citation