Hierarchical Sm-doped ZnO nanorod–nanosheet architecture: dielectric and ferroelectric studies

Abstract

A novel hierarchical samarium (Sm)-doped ZnO nanorod–nanosheet architecture with high-temperature ferroelectricity (Tc ~ 110 °C, Ec ~ 3.64 kV/cm and Pr ~ 0.08 μC/cm2) have been developed here using wet chemical co-precipitation method. In this study, we show the origin of ferroelectric behavior in Sm-doped ZnO product and study the effect of frequency and temperature on its dielectric characteristics. Interestingly as an impact of Sm-doping, the morphology of pristine ZnO got evolved from 1D nanopencils (NPCs) to 3D hierarchical architectures composed of both 1D nanorods (NRs) and 2D nanosheets (NSs). Crystallite size (L), lattice strain (ε), deformation stress (σ), and uniform energy density (u) of both isolated 1D NPCs and 3D hierarchical NR–NS architectures were evaluated using the Debye–Scherrer and Williamson–Hall methods. Temperature-dependent real dielectric constant (ε′) revealed a ferro- to para-electric transition peak at 110 °C. Temperature-dependent complex dielectric constant (ε″), dielectric loss (tan δ) and ac conductivity (σ) were found to increase with temperature. The frequency-dependent dispersion curves of dielectric properties showed an increase in ac conductivity with increase in frequency whereas complex part of dielectric constant and dielectric loss showed an opposite trend. The Sm-doped ZnO NR–NS architecture exhibits weak ferroelectricity with a coercive field (Ec) of 3.64 kV/cm and a remnant polarization (Pr) of 0.08 μC/cm2 at room temperature. Moreover, the high-temperature ferroelectricity established in this work will make Sm–ZnO a futuristic material in the field of designing memory devices.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    S. Goel, N. Sinha, H. Yadav, B. Kumar, Phys. E Low-Dimens. Syst. Nanostruct. 106, 291 (2019)

    ADS  Article  Google Scholar 

  2. 2.

    S. Goel, N. Sinha, H. Yadav, S. Godara, A.J. Joseph, B. Kumar, Mater. Chem. Phys. 202, 56 (2017)

    Article  Google Scholar 

  3. 3.

    H. Yadav, N. Sinha, S. Goel, B. Kumar, J. Alloys Compd. 689, 333 (2016)

    Article  Google Scholar 

  4. 4.

    N. Sinha, S. Goel, A.J. Joseph, H. Yadav, K. Batra, M.K. Gupta, B. Kumar, Ceram. Int. 44, 8582 (2018)

    Article  Google Scholar 

  5. 5.

    Z.L. Wang, Science. 312, 242 (2006)

    ADS  Article  Google Scholar 

  6. 6.

    F. Ali, W. Raza, X. Li, H. Gul, K.-H. Kim, Nano Energy 57, 879 (2019)

    Article  Google Scholar 

  7. 7.

    R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, Nano-Micro Lett. 7, 97 (2015)

    Article  Google Scholar 

  8. 8.

    L. Zhu, W. Zeng, Sensors Actuators A Phys. 267, 242 (2017)

    Article  Google Scholar 

  9. 9.

    S.-H. Lee, S. Han, H.S. Jung, H. Shin, J. Lee, J. Noh, S. Lee, I. Cho, J. Lee, J. Kim, H. Shin, J. Phys. Chem. C 114, 7185 (2010)

    Article  Google Scholar 

  10. 10.

    A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Nat. Mater. 4, 42 (2004)

    ADS  Article  Google Scholar 

  11. 11.

    C. Li, C. Han, Y. Zhang, Z. Zang, M. Wang, X. Tang, J. Du, Sol. Energy Mater. Sol. Cells 172, 341 (2017)

    Article  Google Scholar 

  12. 12.

    M. Laurenti, N. Garino, S. Porro, M. Fontana, C. Gerbaldi, J. Alloys Compd. 640, 321 (2015)

    Article  Google Scholar 

  13. 13.

    C. Li, Z. Zang, C. Han, Z. Hu, X. Tang, J. Du, Y. Leng, K. Sun, Nano Energy 40, 195 (2017)

    Article  Google Scholar 

  14. 14.

    Z. Zang, Appl. Phys. Lett. 112, 042106 (2018)

    ADS  Article  Google Scholar 

  15. 15.

    S. Goel, N. Sinha, H. Yadav, A.J. Joseph, B. Kumar, Phys. E Low-Dimens. Syst. Nanostruct. 91, 72 (2017)

    ADS  Article  Google Scholar 

  16. 16.

    A. Onodera, N. Tamaki, Y. Kawamura, T. Sawada, H. Yamashita, Jpn. J. Appl. Phys. 35, 5160 (1996)

    ADS  Article  Google Scholar 

  17. 17.

    A. Onodera, N. Tamaki, K. Jin, H. Yamashita, Jpn. J. Appl. Phys. 36, 6008 (1997)

    ADS  Article  Google Scholar 

  18. 18.

    A. Onodera, K. Yoshio, H. Satoh, H. Yamashita, N. Sakagami, Jpn. J. Appl. Phys. 37, 5315 (1998)

    ADS  Article  Google Scholar 

  19. 19.

    T. Nagata, T. Shimura, Y. Nakano, A. Ashida, N. Fujimura, T. Ito, Jpn. J. Appl. Phys. 40, 5615 (2001)

    ADS  Article  Google Scholar 

  20. 20.

    A. Hussain, N. Sinha, A.J. Joseph, K. Dhankhar, S. Goel, B. Kumar, J. Mater. Sci.: Mater. Electron. 28, 14298 (2017)

    Google Scholar 

  21. 21.

    A.J. Joseph, S. Goel, A. Hussain, B. Kumar, Ceram. Int. 43, 16676 (2017)

    Article  Google Scholar 

  22. 22.

    A. Hussain, N. Sinha, S. Goel, A.J. Joseph, B. Kumar, J. Alloys Compd. 790, 274 (2019)

    Article  Google Scholar 

  23. 23.

    A.J. Joseph, N. Sinha, S. Goel, A. Hussain, B. Kumar, Ceram. Int. 44, 18633 (2018)

    Article  Google Scholar 

  24. 24.

    A. Hussain, N. Sinha, A.J. Joseph, S. Goel, B. Kumar, J. Mater. Sci.: Mater. Electron. 29, 19567 (2018)

    Google Scholar 

  25. 25.

    H.-Y. Ye, Y. Zhang, S. Noro, K. Kubo, M. Yoshitake, Z.-Q. Liu, H.-L. Cai, D.-W. Fu, H. Yoshikawa, K. Awaga, R.-G. Xiong, T. Nakamura, Sci. Rep. 3, 2249 (2013)

    Article  Google Scholar 

  26. 26.

    S. Goel, N. Sinha, A. Hussain, A.J. Joseph, H. Yadav, B. Kumar, J. Mater. Sci.: Mater. Electron. 29, 13449 (2018)

    Google Scholar 

  27. 27.

    A. Hussain, N. Sinha, A.J. Joseph, S. Goel, B. Singh, I. Bdikin, B. Kumar, Arab. J. Chem. (2018). https://doi.org/10.1016/j.arabjc.2018.02.001

    Article  Google Scholar 

  28. 28.

    H. Yadav, N. Sinha, S. Goel, A. Hussain, B. Kumar, J. Appl. Crystallogr. 49, 2053 (2016)

    Article  Google Scholar 

  29. 29.

    Y.C. Yang, C. Song, F. Zeng, F. Pan, Y.N. Xie, T. Liu, Appl. Phys. Lett. 90, 242903 (2007)

    ADS  Article  Google Scholar 

  30. 30.

    Y.C. Yang, C. Song, X.H. Wang, F. Zeng, F. Pan, J. Appl. Phys. 103, 074107 (2008)

    ADS  Article  Google Scholar 

  31. 31.

    Y.C. Yang, C.F. Zhong, X.H. Wang, B. He, S.Q. Wei, F. Zeng, F. Pan, J. Appl. Phys. 104, 064102 (2008)

    ADS  Article  Google Scholar 

  32. 32.

    S. Goel, N. Sinha, H. Yadav, A.J. Joseph, B. Kumar, J. Mater. Sci.: Mater. Electron. 29, 13818 (2018)

    Google Scholar 

  33. 33.

    K. Batra, N. Sinha, S. Goel, H. Yadav, A.J. Joseph, B. Kumar, J. Alloys Compd. 767, 1003 (2018)

    Article  Google Scholar 

  34. 34.

    S. Goel, N. Sinha, A. Hussain, A.J. Joseph, B. Kumar, Ionics (Kiel). 25, 1373 (2019)

    Article  Google Scholar 

  35. 35.

    S. Goel, N. Sinha, B. Kumar, Phys. E Low-Dimens. Syst. Nanostruct. 105, 29 (2019)

    ADS  Article  Google Scholar 

  36. 36.

    R. Gupta, R.P. Chauhan, S.K. Chakarvarti, R. Kumar, Ionics (Kiel). 25, 341 (2019)

    Article  Google Scholar 

  37. 37.

    S. K. Gupta, R. Gupta, P. Singh, V. Kumar, M. K. Jaiswal, S. K. Chakarvarti, R. Kumar, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 406, 188 (2017)

  38. 38.

    R. Gupta, R. Kumar, J. Mater. Sci. Mater. Electron. 30, 2192 (2019)

    Article  Google Scholar 

  39. 39.

    T.M.K. Thandavan, S.M.A. Gani, C.S. Wong, R.M. Nor, J. Nondestruct. Eval. 34, 14 (2015)

    Article  Google Scholar 

  40. 40.

    F. Wu, Y. Zhao, H. Zhang, Y. Tong, Appl. Phys. A 120, 941 (2015)

    ADS  Article  Google Scholar 

  41. 41.

    X.Y. Kong, Z.L. Wang, Nano Lett. 3, 1625 (2003)

    ADS  Article  Google Scholar 

  42. 42.

    X.Y. Kong, Science. 303, 1348 (2004)

    ADS  Article  Google Scholar 

  43. 43.

    W.U. Huynh, Science. 295, 2425 (2002)

    ADS  Article  Google Scholar 

  44. 44.

    Y.V. Kaneti, Z. Zhang, J. Yue, Q.M.D. Zakaria, C. Chen, X. Jiang, A. Yu, Phys. Chem. Chem. Phys. 16, 11471 (2014)

    Article  Google Scholar 

  45. 45.

    J. Xu, Z. Xue, N. Qin, Z. Cheng, Q. Xiang, Sensors Actuators B Chem. 242, 148 (2017)

    Article  Google Scholar 

  46. 46.

    C. Zhang, Y. Wang, S. Bi, G. Luo, Ind. Eng. Chem. Res. 50, 13355 (2011)

    Article  Google Scholar 

  47. 47.

    S.K. Sharma, D.Y. Kim, J. Mater. Sci. Technol. 32, 12 (2016)

    Article  Google Scholar 

  48. 48.

    P.X. Gao, Z.L. Wang, J. Am. Chem. Soc. 125, 11299 (2003)

    Article  Google Scholar 

  49. 49.

    S. Goel, H. Yadav, N. Sinha, B. Singh, I. Bdikin, D.C. Rao, K. Gopalaiah, B. Kumar, J. Appl. Crystallogr. 50, 1498 (2017)

    Article  Google Scholar 

  50. 50.

    S. Goel, N. Sinha, H. Yadav, A. Hussain, B. Kumar, Mater. Res. Bull. 83, 77 (2016)

    Article  Google Scholar 

  51. 51.

    S. Goel, H. Yadav, N. Sinha, B. Singh, I. Bdikin, B. Kumar, Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 74, 12 (2018)

    Article  Google Scholar 

  52. 52.

    S. Bhukkal, N. Sinha, H. Yadav, S. Goel, B. Singh, I. Bdikin, B. Kumar, Vacuum 154, 90 (2018)

    ADS  Article  Google Scholar 

  53. 53.

    S. Kamba, V. Bovtun, J. Petzelt, I. Rychetsky, R. Mizaras, A. Brilingas, J. Banys, J. Grigas, M. Kosec, J. Phys.: Condens. Matter 12, 497 (2000)

    ADS  Google Scholar 

  54. 54.

    S.A. Ansari, A. Nisar, B. Fatma, W. Khan, M. Chaman, A. Azam, A.H. Naqvi, Mater. Res. Bull. 47, 4161 (2012)

    Article  Google Scholar 

  55. 55.

    H. Terauchi, Y. Yoneda, H. Kasatani, K. Sakaue, T. Koshiba, S. Murakami, Y. Kuroiwa, Y. Noda, S. Sugai, S. Nakashima, H. Maeda, Jpn. J. Appl. Phys. 32, 728 (1993)

    ADS  Article  Google Scholar 

  56. 56.

    M.K. Gupta, N. Sinha, B. Kumar, J. Appl. Phys. 112, 014303 (2012)

    ADS  Article  Google Scholar 

  57. 57.

    S. Sagadevan, I. Das, K. Pal, P. Murugasen, P. Singh, J. Mater. Sci.: Mater. Electron. 28, 5235 (2017)

    Google Scholar 

  58. 58.

    B. Louati, F. Hlel, K. Guidara, J. Alloys Compd. 486, 299 (2009)

    Article  Google Scholar 

  59. 59.

    A.K. Jonscher, Nature 267, 673 (1977)

    ADS  Article  Google Scholar 

  60. 60.

    R. Khan, S. Fashu, J. Mater. Sci.: Mater. Electron. 28, 4333 (2017)

    Google Scholar 

  61. 61.

    S. Sagadevan, K. Pal, Z.Z. Chowdhury, M.E. Hoque, J. Sol–Gel. Sci. Technol. 83, 394 (2017)

    Article  Google Scholar 

  62. 62.

    R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976)

    ADS  Article  Google Scholar 

  63. 63.

    Dhananjay and S. B. Krupanidhi, Appl. Phys. Lett. 89, 082905 (2006)

    ADS  Article  Google Scholar 

Download references

Acknowledgement

The authors want to thank Armament Research Board, ARMREB, Defence Research and Development Organization (Sanction No.: ARMREB/MAA/2015/163), India, and the Department of Science and Technology (Sanction No.: EMR/2015/000385), India for financial support while carrying out of the work. S.G. is grateful to CSIR for Senior Research Fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Binay Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goel, S., Kumar, B. Hierarchical Sm-doped ZnO nanorod–nanosheet architecture: dielectric and ferroelectric studies. Appl. Phys. A 125, 289 (2019). https://doi.org/10.1007/s00339-019-2584-y

Download citation