Skip to main content
Log in

Terahertz plasmon-induced transparency and absorption in compact graphene-based coupled nanoribbons

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We investigate theoretically and numerically the possibility of realizing plasmon-induced transparency (PIT) and plasmon-induced absorption (PIA) in a novel compact graphene-based nanostructure. The main graphene bus waveguide is coupled to two graphene nanoribbons (GNRs). The PIT effect is obtained by setting the two GNRs in an inverted L-shape aside of the main waveguide, giving rise to lambda-like configuration in analogy with three atomic-level systems. The possibility of improving the quality factors of PIT-like resonances is shown and the associated slow light effects are showcased. The mechanism behind the observed transparency windows is related to mode splitting also known as Autler–Townes splitting phenomenon. Two PIA resonances are also demonstrated by the same system. This is achieved by inserting the two GNRs, forming an inverted T-shape, inside the main waveguide. Here the two GNRs are also set in a lambda-like configuration. We indicate the possibility of improving the Q-factor of the PIA resonances and showcase their fast light features. The PIA absorption bands are shown to be essentially caused by interference phenomena between three states as in electromagnetic-induced transparency. The proposed system may help the design of tunable integrated optical devices such as sensors, filters or high speed switches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. X. Zhang, N. Xu, K. Qu, Z. Tian, R. Singh, J. Han et al., Electromagnetically induced absorption in a three-resonator metasurface system. Sci. Rep. 5, 10737 (2015)

    ADS  Google Scholar 

  2. S. Zhang, D.A. Genov, Y. Wang, M. Liu, X. Zhang, Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 101, 047401 (2008)

    ADS  Google Scholar 

  3. M. Fleischhauer, A. Imamoglu, J.P. Marangos, Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633 (2005)

    ADS  Google Scholar 

  4. K. Okamoto, D. Tanaka, R. Degawa, X. Li, P. Wang, S. Ryuzaki et al., Electromagnetically induced transparency of a plasmonic metamaterial light absorber based on multilayered metallic nanoparticle sheets. Sci. Rep. 6, 36165 (2016)

    ADS  Google Scholar 

  5. C. Zhao, S. Xiaokang, J. Rongzhen, D. Gaoyan, W. Lulu, L. Yu et al., Tunable electromagnetically induced transparency in plasmonic system and its application in nanosensor and spectral splitting. IEEE Photonics J. 7, 4801408 (2015)

    Google Scholar 

  6. H. Lu, X. Liu, D. Mao, Plasmonic analog of electromagnetically induced transparency in multinanoresonator-coupled waveguide systems. Phys. Rev. A 85, 053803 (2012)

    ADS  Google Scholar 

  7. J. Guo, Plasmon-induced transparency in metal-insulator-metal waveguide side-coupled with multiple cavities. Appl. Opt. 53, 1604 (2014)

    ADS  Google Scholar 

  8. H.J. Li, L.L. Wang, B.H. Zhang, X. Zhai, Tunable edge-mode-based mid-infrared plasmonically induced transparency in the coupling system of coplanar graphene ribbons. Appl. Phys. Express 9, 012001 (2015)

    ADS  Google Scholar 

  9. J. Wang, X. Liang, S. Liu, Tunable multimode plasmon-induced transparency with graphene side-coupled resonators. J. Appl. Phys. 55, 022201 (2016)

    Google Scholar 

  10. G. Cao et al., Sensing analysis based on plasmon induced transparency in nanocavity coupled waveguide. Opt. Express 23, 20313 (2015)

    Google Scholar 

  11. J. Wang et al., A novel planar metamaterial design for electromagnetically induced transparency and slow light. Opt. Express 21, 25159 (2013)

    ADS  Google Scholar 

  12. S.A. Mikhailov, K. Ziegler, New electromagnetic mode in graphene. Phys. Rev. Lett. 99, 016803 (2007)

    ADS  Google Scholar 

  13. W. Gao, J. Shu, C. Qiu, Q. Xu, Excitation of plasmonic waves in graphene by guided-mode resonances. ACS Nano. 6, 7806 (2012)

    Google Scholar 

  14. K. Geim, K.S. Novoselov, The rise of graphene. Nat. Matter. 6, 183 (2007)

    ADS  Google Scholar 

  15. Z. Su, X. Chen, J. Yin, X. Zhao, Graphene-based terahertz metasurface with tunable spectrum splitting. Opt. Lett. 41, 3799 (2016)

    ADS  Google Scholar 

  16. L. Luo, K. Wang, K. Guo, F. Shen, X. Zhang, Z. Yin, Z. Guo, Tunable manipulation of terahertz wavefront based on graphene metasurfaces. J. Opt. 19, 115104 (2017)

    ADS  Google Scholar 

  17. Z. Fang, Z. Liu, Y. Wang, P.M. Ajayan, P. Nordlander, N.J. Halas, Graphene-antenna sandwich photodetector. Nano Lett. 12, 3808 (2012)

    ADS  Google Scholar 

  18. Z. Fang, Y. Wang, A.E. Schlather, Z. Liu, P.M. Ajayan, F.J. García de Abajo, P. Nordlander, X. Zhu, N.J. Halas, Active tunable absorption enhancement with graphene nanodisk arrays. Nano Lett. 14, 299 (2013)

    ADS  Google Scholar 

  19. Y. Nikitin, F. Guinea, F.J. Garcia-Vidal, L. Martin-Moreno, Edge and waveguide terahertz surface plasmon modes in graphene microribbons. Phys. Rev. B 84, 161407 (2011)

    ADS  Google Scholar 

  20. X. Zhu, W. Yan, N.A. Mortensen, S. Xiao, Bends and splitters in graphene nanoribbon waveguides. Opt. Express 21, 3486 (2013)

    ADS  Google Scholar 

  21. F. Xing, Z.B. Liu et al., Sensitive real-time monitoring of refractive indexes using a novel graphene-based optical sensor. Sci. Rep. 2, 908 (2012)

    Google Scholar 

  22. M. Pan, Z. Liang et al., Tunable angle-independent refractive index sensor based on Fano resonance in integrated metal and graphene nanoribbons. Sci. Rep. 6, 29984 (2016)

    ADS  Google Scholar 

  23. S.X. Xia, X. Zhai et al., Multi-band perfect plasmonic absorptions using rectangular graphene gratings. Opt. Lett. Lett. 42, 3052 (2017)

    ADS  Google Scholar 

  24. L. Wang et al., Tunable control of electromagnetically induced transparency analogue in a compact graphene-based waveguide. Opt. Lett. 40, 2325 (2015)

    ADS  Google Scholar 

  25. S.X. Xia, X. Zhai et al., Plasmonically induced transparency in double-layered graphene nanoribbons. Photon. Res. 6, 692 (2018)

    Google Scholar 

  26. A. Lezama et al., Electromagnetically induced absorption. Phys. Rev. A 59, 4732 (1999)

    ADS  Google Scholar 

  27. J. He et al., Ultra-narrow band perfect absorbers based on plasmonic analog of electromagnetically induced absorption. Opt. Express 23, 6083 (2015)

    ADS  Google Scholar 

  28. X. Zhang et al., Electromagnetically induced absorption in a three-resonator metasurface system. Sci. Rep. 5, 10737 (2015)

    ADS  Google Scholar 

  29. M. Wen et al., Dynamically tunable plasmon-induced absorption in resonator-coupled graphene waveguide. Europhys. Lett. 116, 44004 (2017)

    ADS  Google Scholar 

  30. C. Liu et al., Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature. 409, 490 (2001)

    ADS  Google Scholar 

  31. F. Xia et al., Ultracompact optical buffers on a silicon chip. Nature Photon. 1, 65 (2007)

    ADS  Google Scholar 

  32. B. Peng, ŞK. Özdemir et al., what is and what is not electromagnetic induced transparency in whispering-gallery microcavities. Nat. Commun. 5, 5082 (2014)

    ADS  Google Scholar 

  33. L. Giner, L. Veissier et al., Experimental investigation of the transition between Autler–Townes splitting and electromagnetically induced transparency models. Phys. Rev. A 87, 013823 (2013)

    ADS  Google Scholar 

  34. J. Liu, H. Yang et al., Experimental distinction of Autler–Townes splitting from electromagnetically induced transparency using coupled mechanical oscillators system. Sci. Rep. 6, 19040 (2016)

    ADS  Google Scholar 

  35. J. Chen et al., Optical nano-imaging of gate-tunable graphene plasmons. Nature. 487, 77 (2012)

    ADS  Google Scholar 

  36. Y. Francescato et al., Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon. New J. Phys. 15, 063020 (2013)

    ADS  Google Scholar 

  37. S.X. Xia et al., Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers. Opt. Express 24, 17886 (2016)

    ADS  Google Scholar 

  38. Q. Lin, X. Zhai et al., Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings. EPL. 111, 34004 (2015)

    ADS  Google Scholar 

  39. H. Lu, X. Liu et al., Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems. Phys. Rev. A 85, 053803 (2012)

    ADS  Google Scholar 

  40. M.L. Ladron de Guevara, F. Claro et al., Ghost Fano resonance in a double quantum dot molecule attached to leads. Phys. Rev. B 67, 195335 (2003)

    ADS  Google Scholar 

  41. C. Hu, L. Wang et al., Tunable double transparency windows induced by single subradiant element in coupled graphene plasmonic nanostructure. Appl. Phys. Express 9, 052001 (2016)

    ADS  Google Scholar 

  42. T. Zhang, J. Zhou, Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor. J. Phys. D: Appl. Phys. 51, 055103 (2018)

    ADS  Google Scholar 

  43. E.H. El Boudouti et al, Experimental and theoretical evidence for the existence of photonic bandgaps and selective transmissions in serial loop structures. J. Appl. Phys. 95. 1102 (2004)

    ADS  Google Scholar 

  44. W. Boyd, Slow and fast light: fundamentals and applications. J. Mod. Opt. 56, 1908 (2009)

    ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnane Noual.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noual, A., Amrani, M., El Boudouti, E.H. et al. Terahertz plasmon-induced transparency and absorption in compact graphene-based coupled nanoribbons. Appl. Phys. A 125, 184 (2019). https://doi.org/10.1007/s00339-019-2474-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2474-3

Navigation