Skip to main content
Log in

Investigation of structural, optical and morphological properties of InGaN/GaN structure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, InGaN/GaN structure is investigated in the temperature range of 300–500 °C with steps of 50 °C. InGaN/GaN multi-quantum well structure is deposited on c-orientated sapphire wafer by metal organic chemical vapour deposition method. All the parameters except for temperature kept constant during growth period. InGaN/GaN structures with different In content are investigated by XRD technique. Their structural, optical and morphological characteristics are determined by high resolution X-ray diffraction, Fourier transform spectroscopy (FTIR), photo luminescence (PL), transmission and atomic force microscopy (AFM). According to FTIR and PL spectra’s, it is noticed that band gap values coincide with blue region in the electromagnetic spectrum. As a result of transmission measurements it is seen that light is completely absorbed by the sample at approximately 390 nm. Using XRD technique, dislocation densities and strain are calculated. Full width at half maximum of the XRD peak values gained from X-ray diffraction are used in an alternative method called Williamson–Hall (W–H). Using W–H method, lateral and vertical crystal lengths and tilt angles are determined. Surface roughness parameters are investigated by AFM. Different properties of GaN and InGaN layers are compared as dependent on increasing temperature. According to AFM images it is seen that these structures have high surface roughness and large crystal size. All the results yielded from the mentioned methods are in good agreement with the previous works done by different authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Morkoç, Hand book of nitride semiconductors and devices, vol. 1 (Wiley, Berlin, 2008), p. 16

    Google Scholar 

  2. S. Çörekçi (2008). Morphological characteristics of III-V group compound semiconductors Doctora Thesis, Gazi University, Ankara, 10(11), p. 39

  3. S.T. Bayrak (2011). InGaN/GaN Multi quantum well light emitting diodes. Doctora thesis Balıkesir University Science institude, Balıkesir, p. 7–11

  4. S. Nakamura, The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Science 281(5379), 956–961 (1998)

    Article  Google Scholar 

  5. S. Nakamura, I. Akasaki, H. Amano, Blue, LEDs, Filling the world with new light (The royal Swedish academy of sciences, Stockholm)

  6. D.M. Graham, A. Soltani-Vala, P. Dawson, M.J. Godfrey, T.M. Smeeton, J.S. Barnard, M.J. Kappers, C.J. Humphreys, E.J. Thrush, J. Appl. Phys. 97, 103508 (2005)

    Article  ADS  Google Scholar 

  7. F.A. Ponce, B.S. Krusor, J.S.M. Jr, W.E. Plano, J. Welch, Microstructure of GaN epitaxy on SiC using AlN buffer layers. Appl. Phys. Lett. 67(3), 410–412 (1995)

    Article  ADS  Google Scholar 

  8. S. Chichibu, T. Azuhata, T. Sota, S. Nakamura, Spontaneous emission of localized excitons in InGaN single and multiquantum well structures. Appl. Phys. Lett. 69(27), 4188–4190 (1996)

    Article  ADS  Google Scholar 

  9. S.D. Lester, F.A. Ponce, M.G. Crawford, D.A. Steigerwald, High dislocation densities in high-efficiency Gan-based light-emitting-diodes. Appl. Phys. Lett. 66(10), 1249–1251 (1995)

    Article  ADS  Google Scholar 

  10. M.K. Öztürk, H. Yu, B. Sarıkavak, S. Korçak, S. Özçelik, E. Özbay, Structural analysis of an InGaN/GaN based light emitting diode by X-ray diffraction. J. Mater. Sci. 21(2), 185–191 (2010)

    Google Scholar 

  11. M.K. Öztürk, S. Çörekçi, M. Tamer, S. Çetin, S. Özçelik, E. Özbay, Microstructural properties of InGaN/GaN light-emitting diode structures with different In content grown by MOCVD. Appl. Phys. A Mater. Sci. Process. 114(4), 1215–1221 (2014)

    Article  ADS  Google Scholar 

  12. V.S. Harutyunyan, A.P. Aivazyan, E.R. Weber, Y. Kim, Y. Park, S.G. Subramanya, High resolution X-ray diffraction strain-stress analysis of GaN/Sapphire heterostructures. J. Phys. D Appl. Phys. 34(10A), A35–A39 (2001)

    Article  ADS  Google Scholar 

  13. M.A.G. Halliwell, X-ray diffraction solutions to heteroepitaxial growth problems. J. Cryst. Growth 170(1–4), 47–54 (1997)

    Article  ADS  Google Scholar 

  14. T. Metzger, R. Höpler, E. Born, O. Ambacher, M. Stutzmann, R. Stömmer, M. Schuster, H. Gobe, S. Christiansen, M. Albrecht, H.P. Strun, Defect structure of epitaxial GaN films determined by transmission electron microscopy and triple-axis X-ray diffractometry. Philos. Mag A 77(4), 1013–1025 (1998)

    Article  ADS  Google Scholar 

  15. M.K. Öztürk, H. Altuntaş, S. Çörekçi, Y. Hongbo, S. Özçelik, E. Özbay, Strain–stress analysis of AlGaN/GaN heterostructures with and without an AlN suffer and interlayer. Strain 47(s2), 19–27 (2011)

    Article  Google Scholar 

  16. M.K. Öztürk, E. Arslan, İ Kars, S. Özçelik, E. Özbay, Strain analysis of the GaN epitaxial layers grown on nitridated Si(111) substrate by metal organic chemical vapor deposition. Mater. Sci. Semiconduct. Process. 16(1), 83–88 (2013)

    Article  Google Scholar 

  17. G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1(1), 22–31 (1953)

    Article  Google Scholar 

  18. E. Arslan, M.K. Öztürk, Ö Duygulu, A.A. Kaya, S. Özçelik, E. Özbay, The influence of nitridation time on the structural properties of GaN grown on Si(111) substrate. Appl. Phys. A Mater. Sci. Process. 94(1), 73–82 (2009)

    Article  ADS  Google Scholar 

  19. E. Arslan, M.K. Öztürk, A. Teke, S. Özçelik, E. Özbay, Buffer optimization for crack-free GaN epitaxial layers grown on Si(111) substrate by MOCVD. Jpn. J. Phys. D 41(15), 155317–155326 (2008)

    Article  ADS  Google Scholar 

  20. M.E. Vickers, M.J. Kappers, R. Datta, C. McAleese, T.M. Smeeton, F.D.G. Rayment, C.J. Humphreys, In-plane imperfections in GaN studied by X-ray diffraction. J. Phys. D 38(A10), A99–A104 (2005)

    Article  ADS  Google Scholar 

  21. X.H. Zheng, H. Chen, Z.B. Yan, Y.J. Han, H.B. Yu, D.S. Li, Q. Huang, J.M. Zhou, Determination of twist angle of in-plane mosaic spread of GaN films by high-resolution X-ray diffraction. J. Cryst. Growth 255(1–2), 63–67 (2003)

    Article  ADS  Google Scholar 

  22. P. Gay, P.B. Hirsch, A. Kelly, The estimation of dislocation densities in metals from X-ray data. Acta Metall. 1(3), 315–319 (1953)

    Article  Google Scholar 

  23. M.J. Hordon, B.L. Averbach, X-ray measurements of dislocation density in deformed copper and aluminum single crystals. Acta Metall. 9(3), 237–246 (1961)

    Article  Google Scholar 

  24. A. Vogt et al., Recombination dynamics in planar and three-dimensional InGaN/GaN light emitting diode structures. J. Mater. Res. 32(13), 2456–2463 (2017)

    Article  ADS  Google Scholar 

  25. M.A. Reshchikov, H. Morkoc, Luminescence properties of defects in GaN. J. Appl. Phys. 97(6), 135 (2005)

    Article  Google Scholar 

  26. J.R. Taylor, C.D. Zafiratos, M.A. Dubson (2004). Modern Physics for scientists and engineers (Colorado University, Boulder), p. 101–115

    Google Scholar 

  27. H. Çakmak (2012). Growth and characterisation of In rich InGaN solar cell epitaxial structures by metal organic chemical vapor deposition. Master Thesis, Middle East technical university, Turkey, 60–70

  28. Y. Baş (2014). Investigation of InGaN blue LED microstructure defects from reciprocal space mapping. Doctora Thesis, Gazi University, Turkey, 60–103

  29. J.F. Muth et al., Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements. Appl. Phys. Lett. 71(18), 2572–2574 (1997)

    Article  ADS  Google Scholar 

  30. S.S. Ng et al. Surface phonon polariton of wurtzite GaN thin film grown on c-plane sapphire substrate. Solid State Commun. 145(11–12), 535–538 (2008)

    Article  ADS  Google Scholar 

  31. S.S. Ng et al. Surface and interface phonon polaritons of wurtzite GaN thin film grown on 6H-SiC substrate. Appl. Phys. Lett. 94(24), 241912 (2009)

    Article  ADS  Google Scholar 

  32. A. Erol Dilute III–IV nitride semiconductors and material systems. Phys. Technol. 2008, 105 (2008)

    Google Scholar 

  33. R. Darshan Sharma Jha, Analysis of structural, optical and magnetic properties of Fe/Co co-doped ZnO nanocrystals. Ceram. Int. 43, 8488–8496 (2017)

    Article  Google Scholar 

  34. A. Torabi et al., Surface and interface characterization of GaN/AlGaN high electron mobility transistor structures by X-ray and atomic force microscopy. J. Vac. Sci. Technol. B 20(3), 1234–1237 (2002)

    Article  ADS  Google Scholar 

  35. F.C. Frank, The influence of dislocations on crystal growth. Discuss. Faraday Soc. 5, 48 54 (1949)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kürşat Bilgili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilgili, A.K., Akpınar, Ö., Öztürk, M.K. et al. Investigation of structural, optical and morphological properties of InGaN/GaN structure. Appl. Phys. A 125, 36 (2019). https://doi.org/10.1007/s00339-018-2338-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2338-2

Navigation