Skip to main content

Advertisement

Log in

Fabrication and corrosion property of novel 3-aminopropyltriethoxy-modified calcium phosphate/poly(lactic acid) composite coating on AZ60 Mg alloy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

To improve the corrosion resistance of AZ60 Mg alloy as orthopaedic implants in human body, a novel 3-aminopropyltriethoxy-calcium phosphate/polylactic acid (APTES-CaP/PLA) composite coating was successfully prepared on AZ60 Mg alloy. 3-aminopropyltriethoxy (APTES) was introduced to enhance the interfacial strength between CaP and PLA in the CaP/PLA composite coating. CaP coating was first prepared by chemical conversion method prior to its surface silanization with APTES, and then was dip-coated with PLA to prepare APTES-CaP/PLA composite coating. The as-prepared APTES-CaP/PLA coating presented a more uniform and defectless surface compared with the unmodified CaP/PLA coating. The FTIR spectra confirmed the successful coupling of APTES with CaP and PLA. Electrochemical tests and 7-day immersion test were conducted in the simulated body fluid (SBF) at 37 °C, and whose results indicated that the corrosion resistance of the composite coating was improved obviously after the introducing of silane coupling agent. The interfacial adhesion strength was characterized by Tape Test method according to ASTM D3359-93, which showed that the interfacial strength of the composite coating was greatly enhanced. These results demonstrated that the APTES-CaP/PLA coating had great potential on facilitating the clinical application of Mg-based orthopaedic implants because of its excellent degradation resistance in body fluid environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Agarwal, J. Curtin, B. Duffy, S. Jaiswal, Biodegradable magnesium alloys for orthopaedic applications: a review on corrosion, biocompatibility and surface modifications. Mater. Sci. Eng. C Mater. Biol. Appl. 68, 948–963 (2016)

    Article  Google Scholar 

  2. A.R. Boccaccini, J.J. Blaker, Bioactive composite materials for tissue engineering scaffolds. Expert Rev. Med. Devices 2(3), 303–317 (2005)

    Article  Google Scholar 

  3. B.L. Mordike, T. Ebert, Magnesium: properties—applications—potential. Mat. Sci. Eng. Struct. 302(1), 37–45 (2001)

    Article  Google Scholar 

  4. F. Witte, The history of biodegradable magnesium implants: a review. Acta Biomater. 6(5), 1680–1692 (2010)

    Article  Google Scholar 

  5. G. Song, A. Atrens, Understanding magnesium corrosion—a framework for improved alloy performance, Adv. Eng. Mater. 5(12), 837–858 (2003)

    Article  Google Scholar 

  6. F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, H. Windhagen, In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26(17), 3557–3563 (2005)

    Article  Google Scholar 

  7. H. Hornberger, S. Virtanen, A.R. Boccaccini, Biomedical coatings on magnesium alloys—a review. Acta Biomater. 8(7), 2442–2455 (2012)

    Article  Google Scholar 

  8. B.L.J.E. Gray, Protective coatings on magnesium and its alloys—a critical review. J. Alloy. Compd. 336(1), 88–113 (2002)

    Article  Google Scholar 

  9. J. Wang, J. Tang, P. Zhang, Y. Li, J. Wang, Y. Lai, L. Qin, Surface modification of magnesium alloys developed for bioabsorbable orthopedic implants: a general review. J. Biomed. Mater. Res. B Appl. Biomater. 100(6), 1691–1701 (2012)

    Article  Google Scholar 

  10. J. Yang, F. Cui, I.S. Lee, Surface modifications of magnesium alloys for biomedical applications. Ann. Biomed. Eng. 39(7), 1857–1871 (2011)

    Article  Google Scholar 

  11. S.V. Dorozhkin, Calcium orthophosphate coatings on magnesium and its biodegradable alloys. Acta Biomater. 10(7,), 2919–2934 (2014)

    Article  Google Scholar 

  12. S. Shadanbaz, G.J. Dias, Calcium phosphate coatings on magnesium alloys for biomedical applications: a review. Acta Biomater. 8(1), 20–30 (2012)

    Article  Google Scholar 

  13. R.A. Surmenev, M.A. Surmeneva, A.A. Ivanova, Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis—a review. Acta Biomater. 10(2), 557–579 (2014)

    Article  Google Scholar 

  14. Y. Su, C. Luo, Z. Zhang, H. Hermawan, D. Zhu, J. Huang, Y. Liang, G. Li, L. Ren, Bioinspired surface functionalization of metallic biomaterials. J. Mech. Behav. Biomed. 77, 90–105 (2018)

    Article  Google Scholar 

  15. X.B. Chen, N. Birbilis, T.B. Abbott, Effect of [Ca2+] and [PO4 3–] levels on the formation of calcium phosphate conversion coatings on die-cast magnesium alloy AZ91D. Corros. Sci. 55, 226–232 (2012)

    Article  Google Scholar 

  16. G.Y. Liu, J. Hu, Z.K. Ding, C. Wang, Bioactive calcium phosphate coating formed on micro-arc oxidized magnesium by chemical deposition. Appl. Surf. Sci. 257(6), 2051–2057 (2011)

    Article  ADS  Google Scholar 

  17. G.Y. Liu, J. Hu, Z.K. Ding, C. Wang, Formation mechanism of calcium phosphate coating on micro-arc oxidized magnesium. Mater. Chem. Phys. 130(3), 1118–1124 (2011)

    Article  Google Scholar 

  18. L. Xu, F. Pan, G. Yu, L. Yang, E. Zhang, K. Yang, In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials 30(8), 1512–1523 (2009)

    Article  Google Scholar 

  19. Y. Su, L. Niu, Y. Lu, J. Lian, G. Li, Preparation and corrosion behavior of calcium phosphate and hydroxyapatite conversion coatings on AM60 magnesium alloy. J. Electrochem. Soc. 160(11), C536–C541 (2013)

    Article  Google Scholar 

  20. A.P. Gupta, V. Kumar, New emerging trends in synthetic biodegradable polymers—polylactide: a critique. Eur. Polym. J. 43(10), 4053–4074 (2007)

    Article  Google Scholar 

  21. A.J. Lasprilla, G.A. Martinez, B.H. Lunelli, A.L. Jardini, R.M. Filho, Poly-lactic acid synthesis for application in biomedical devices—a review. Biotechnol. Adv. 30(1), 321–328 (2012)

    Article  Google Scholar 

  22. W. Zhang, Y. Chen, M. Chen, S. Zhao, J. Mao, A. Qu, W. Li, Y. Zhao, N. Huang, G. Wan, Strengthened corrosion control of poly (lactic acid) (PLA) and poly (ε-caprolactone) (PCL) polymer-coated magnesium by imbedded hydrophobic stearic acid (SA) thin layer. Corros. Sci. 112, 327–337 (2016)

    Article  Google Scholar 

  23. C.A. Mills, M. Navarro, E. Engel, E. Martinez, M.P. Ginebra, J. Planell, A. Errachid, J. Samitier, Transparent micro- and nanopatterned poly(lactic acid) for biomedical applications. J. Biomed. Mater. Res. A 76(4), 781–787 (2006)

    Article  Google Scholar 

  24. S. Kaabi Falahieh Asl, S. Nemeth, M.J. Tan, Novel biodegradable calcium phosphate/polymer composite coating with adjustable mechanical properties formed by hydrothermal process for corrosion protection of magnesium substrate. J. Biomed. Mater. Res. B Appl. Biomater. 104(8), 1643–1657 (2016)

    Article  Google Scholar 

  25. B. Li, K. Zhang, W. Yang, X. Yin, Y. Liu, Enhanced corrosion resistance of HA/CaTiO3/TiO2/PLA coated AZ31 alloy. J. Taiwan Inst. Chem. E. 59, 465–473 (2016)

    Article  Google Scholar 

  26. L. Zhang, J. Pei, H. Wang, Y. Shi, J. Niu, F. Yuan, H. Huang, H. Zhang, G. Yuan, Facile preparation of poly(lactic acid)/brushite bilayer coating on biodegradable magnesium alloys with multiple functionalities for orthopedic application. ACS Appl. Mater. Interfaces 9(11), 9437–9448 (2017)

    Article  Google Scholar 

  27. M. Diez, M.H. Kang, S.M. Kim, H.E. Kim, J. Song, Hydroxyapatite (HA)/poly-l-lactic acid (PLLA) dual coating on magnesium alloy under deformation for biomedical applications. J. Mater. Sci. Mater. Med. 27(2), 34 (2016)

    Article  Google Scholar 

  28. A. Abdal-hay, N.A.M. Barakat, J.K. Lim, Hydroxyapatite-doped poly(lactic acid) porous film coating for enhanced bioactivity and corrosion behavior of AZ31 Mg alloy for orthopedic applications. Ceram. Int. 39(1), 183–195 (2013)

    Article  Google Scholar 

  29. A. Alabbasi, S. Liyanaarachchi, M.B. Kannan, Polylactic acid coating on a biodegradable magnesium alloy: an in vitro degradation study by electrochemical impedance spectroscopy. Thin Solid Films 520(23), 6841–6844 (2012)

    Article  ADS  Google Scholar 

  30. R.E. Neuendorf, E. Saiz, A.P. Tomsia, R.O. Ritchie, Adhesion between biodegradable polymers and hydroxyapatite: relevance to synthetic bone-like materials and tissue engineering scaffolds. Acta Biomater. 4(5), 1288–1296 (2008)

    Article  Google Scholar 

  31. T.F. Child, W.J. van Ooij, Application of silane technology to prevent corrosion of metals and improve paint adhesion. Trans. IMF 77(2), 64–70 (2017)

    Article  Google Scholar 

  32. Y. Xie, C.A.S. Hill, Z. Xiao, H. Militz, C. Mai, Silane coupling agents used for natural fiber/polymer composites: a review. Compos. Part A Appl. S. 41(7), 806–819 (2010)

    Article  Google Scholar 

  33. E. Plueddemann, Silane Coupling Agents, (Springer Science & Business Media, New York, 2013)

    Google Scholar 

  34. K.L. Mittal, Silanes and Other Coupling Agents, vol. 3, (CRC Press, Boca Raton, 2004)

    Book  Google Scholar 

  35. J. Liu, B. Zheng, P. Wang, X. Wang, B. Zhang, Q. Shi, T. Xi, M. Chen, S. Guan, Enhanced in vitro and in vivo performance of Mg–Zn–Y–Nd alloy achieved with APTES pretreatment for drug-eluting vascular stent application. ACS Appl. Mater. Interfaces 8(28), 17842–17858 (2016)

    Article  Google Scholar 

  36. J. Jang, K. Kim, Eui, Corrosion protection of epoxy-coated steel using different silane coupling agents. J. Appl. Polym. Sci. 71(4), 585–593 (1999)

    Article  Google Scholar 

  37. Z. Fang, Q. Feng, Improved mechanical properties of hydroxyapatite whisker-reinforced poly(L-lactic acid) scaffold by surface modification of hydroxyapatite. Mater. Sci. Eng. C Mater. Biol. Appl. 35, 190–194 (2014)

    Article  Google Scholar 

  38. X. Wang, G. Song, T. Lou, Fabrication and characterization of nano-composite scaffold of PLLA/silane modified hydroxyapatite. Med. Eng. Phys. 32(4), 391–397 (2010)

    Article  ADS  Google Scholar 

  39. T. Lu, S. Liu, M. Jiang, X. Xu, Y. Wang, Z. Wang, J. Gou, D. Hui, Z. Zhou, Effects of modifications of bamboo cellulose fibers on the improved mechanical properties of cellulose reinforced poly(lactic acid) composites. Compos. Part B Eng. 62, 191–197 (2014)

    Article  Google Scholar 

  40. J. Niu, H. Liu, X. Ping, X. Xun, G. Li, Silane coupling agent (SCA) pretreatment and polycaprolactone (PCL) coating for enhanced corrosion resistance for magnesium, J. Coat. Technol. Res. (2018)

  41. Y. Su, Y. Guo, Z. Huang, Z. Zhang, G. Li, J. Lian, L. Ren, Preparation and corrosion behaviors of calcium phosphate conversion coating on magnesium alloy. Surf. Coat. Tech. 307, 99–108 (2016)

    Article  Google Scholar 

  42. J. Zhang, C.-S. Dai, J. Wei, Z.-H. Wen, Study on the bonding strength between calcium phosphate/chitosan composite coatings and a Mg alloy substrate. Appl. Surf. Sci. 261, 276–286 (2012)

    Article  ADS  Google Scholar 

  43. C. Sekar, P. Kanchana, R. Nithyaselvi, E.K. Girija, Effect of fluorides (KF and NaF) on the growth of dicalcium phosphate dihydrate (DCPD) crystal. Mater. Chem. Phys. 115(1), 21–27 (2009)

    Article  Google Scholar 

  44. Z.L. Wang, Y.H. Yan, T. Wan, H. Yang, Poly(l-lactic acid)/hydroxyapatite/collagen composite coatings on AZ31 magnesium alloy for biomedical application. Proc. Inst. Mech. Eng. H 227(10), 1094–1103 (2013)

    Article  Google Scholar 

  45. S. Zhou, X. Zheng, X. Yu, J. Wang, J. Weng, X. Li, B. Feng, M. Yin, Hydrogen bonding interaction of poly(d,l-lactide)/hydroxyapatite nanocomposites. Chem. Mater. 19(2), 247–253 (2007)

    Article  Google Scholar 

  46. S.M. Zhang, J. Liu, W. Zhou, L. Cheng, X.D. Guo, Interfacial fabrication and property of hydroxyapatite/polylactide resorbable bone fixation composites. Curr. Appl. Phys. 5(5), 516–518 (2005)

    Article  ADS  Google Scholar 

  47. B. Wei, Q. Chang, C. Bao, L. Dai, G. Zhang, F. Wu, Surface modification of filter medium particles with silane coupling agent KH550. Colloid. Surf. A 434, 276–280 (2013)

    Article  Google Scholar 

  48. C.L. Popa, A. Groza, P. Chapon, C.S. Ciobanu, R.V. Ghita, R. Trusca, M. Ganciu, D. Predoi, Physicochemical analysis of the polydimethylsiloxane interlayer influence on a hydroxyapatite doped with silver coating. J. Nanomater. 2015, 1–10 (2015)

    Google Scholar 

  49. B. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy, 2nd edn. (CRC Press, Boca Raton, 2011)

    Book  Google Scholar 

  50. S.F. Mertens, C. Xhoffer, B.C. De Cooman, E. Temmerman, Short-term deterioration of polymer-coated 55% Al-Zn—part 1: behavior of thin polymer films. Corrosion 53(5), 381–388 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the China National Nature Science Foundations (Grant Nos. 31070841 and 51705195).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Niu, J., Liu, H. et al. Fabrication and corrosion property of novel 3-aminopropyltriethoxy-modified calcium phosphate/poly(lactic acid) composite coating on AZ60 Mg alloy. Appl. Phys. A 124, 825 (2018). https://doi.org/10.1007/s00339-018-2240-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2240-y

Navigation