Skip to main content

Advertisement

Log in

In vitro bioactivity and biocompatibility of femtosecond laser-modified Ti6Al4V alloy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The present work investigates bioactivity and biocompatibility of femtosecond (fs) laser surface-modified Ti6Al4V alloy (Ti-alloy). Self-aligned conical surface features were generated on Ti-alloy when laser irradiated employing a Ti:sapphire pulsed fs laser of wavelength 800 nm. Modification of surface chemical composition resulting from fs-laser irradiation of Ti-alloy was examined using Grazing incidence X-ray diffraction (GIXRD) technique and micro-Raman spectroscopy. Sub-oxide phase of titanium was detected on Ti-alloy surface post-fs-laser irradiation leading to increased oxygen vacancies on sample surface. For in vitro bioactivity tests, untreated and fs-laser-treated samples were immersed in simulated body fluid for 2 weeks. Evidence of hydroxyapatite deposition on both untreated Ti-alloy, as well as, fs-laser-treated Ti-alloy surfaces after in vitro tests were provided by scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), GIXRD, Fourier transform infrared spectroscopy (FTIR), and micro-Raman spectroscopy. Superior growth of HAP was observed on fs-laser-modified Ti-alloy surface in comparison with untreated surface. Biocompatibility of the laser-treated Ti-alloy was investigated by studying anchoring and growth of human osteosarcoma cell line (U2OS) on it. Using MTT assay technique in vitro cell viability and growth potential in the presence of untreated and laser-treated Ti-alloy samples were assessed. MTT test results demonstrated that, neither cell viability, nor growth were affected in the presence of either the untreated or laser-treated sample surfaces. In addition, in comparison with the untreated Ti-alloy surface, the fs-laser-treated Ti-alloy surface showed more efficient cellular attachment when examined under confocal microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L.N. Wang, M. Jin, Y. Zheng, Y. Guan, X. Lu, L. Jing-Li, Nanotubular surface modification of metallic implants via electrochemical anodization technique. Int. J. Nanomed. 9, 4421–4435 (2014)

    Article  Google Scholar 

  2. M. Balazic, J. Kopac, M.J. Jackson, W. Ahmed, Review: titanium and titanium alloy applications in medicine. Int. J. Nano. Biomater. 1(1), 8933–8941 (2007)

    Article  Google Scholar 

  3. R. van Noort, Review titanium: the implant material of today. J. Mater. Sci. 22, 3801–3811 (1987)

    Article  ADS  Google Scholar 

  4. D.A. Puleo, A. Nanci, Understanding and controlling the bone-implant interface. Biomaterials 20, 2311–2321 (1999)

    Article  Google Scholar 

  5. S. Nishiguchi, H. Kato, H. Fujita, M. Oka, H.M. Kim, T. Kokubo, T. Nakamura, Titanium metals form direct bonding to bone after alkali and heat treatments. Biomaterials 22, 2525–2533 (2001)

    Article  Google Scholar 

  6. S.A. Hacking, E.J. Harvey, M. Tanzer, J.J. Krygier, J.D. Bobyn, Acidetched microtexture for enhancement of bone growth into porouscoated implants. J. Bone Jt. Surg. 85B, 1182–1189 (2003)

    Article  Google Scholar 

  7. I.V. Pylypchuk, A.L. Petranovskaya, P.P. Gorbyk, A.M. Korduban, P.E. Markovsky, O.M. Ivasishin, Biomimetic hydroxyapatite growth on functionalized surfaces of Ti-6Al-4V and Ti-Zr- Nb alloys. Nanoscale Res. Lett. 10, 338 (2015)

    Article  ADS  Google Scholar 

  8. H. Tsuchiya, J.M. Macak, L. Muller, J. Kunze, F. Muller, P. Greil, S. Virtanen, P. Schmuki, HAP growth on anodic TiO2 nanotubes. J. Biomed. Mater. Res. Part A 17, 30677 (2005)

    Google Scholar 

  9. F. Hilario, V. Roche, R.P. Nogueira, A.M. Junior, Influence of morphology and crystalline structure of TiO2 nanotubes on their electrochemical properties and apatite-forming ability. Electrochim. Acta 245, 337–349 (2017)

    Article  Google Scholar 

  10. A. Sola, D. Bellucci, V. Cannillo, A. Cattini, Bioactive glass coatings: a review. Surf. Eng. 27, 560–571 (2011)

    Article  Google Scholar 

  11. K. Van Dijk, H.G. Schaeken, J.G.G. Wolke, J.A. Jansen, Influence of annealing temperature on RF magnetron sputtered calcium phosphate coatings. Biomaterials 17, 159 (1998)

    Google Scholar 

  12. M. Wei, A.J. Ruys, B.K. Milthorpe, C.C. Sorrell, Precipitation of HAP nanoparticles: effects of precipitation method on electrophoretic deposition. J. Mater. Sci. Mater. Med. 16(4), 319–324 (2005)

    Article  Google Scholar 

  13. L. Le Guehennec, A. Soueidan, P. Layrolle, Y. Amouriq, Surface treatments of titanium dental implants for rapid osseointegration. Dent. Mater. 23, 844–854 (2007)

    Article  Google Scholar 

  14. N. Lin, D. Li, R. Xie, Z. Wang, B. Tang, Review surface texturebased surface treatments on Ti6Al4V titanium alloys for tribological and biological applications. A mini review. Materials 11(4), 487 (2018)

    Google Scholar 

  15. K. Anselme, P. Linez, M. Bigerelle, D. Le Maguer, A. Le Maguer, P. Hardouin, H.F. Hildebrand, A. Iost, J.M. Leroy, The relative influence of the topography and chemistry of TiAl6V4 surfaces on osteoblastic cell behaviour. Biomaterials 21(15), 1567–1577 (2000)

    Article  Google Scholar 

  16. H. Wang, C. Liang, Y. Yang, C. Li, Bioactivities of a Ti surface ablated with a femtosecond laser through SBF. Biomed. Mater. 5(5), 054115 (2010)

    Article  ADS  Google Scholar 

  17. C. Liang, H. Wang, J. Yang, Y. Yang, X. Yang, Surface modification of cp-Ti using femtosecond laser micromachining and the deposition of Ca/P layer. Mater. Lett. 62, 3783–3786 (2008)

    Article  Google Scholar 

  18. B.K. Nayak, M.C. Gupta, Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation. Opt. Lasers Eng. 48, 940–949 (2010)

    Article  Google Scholar 

  19. M. Tsukamoto, K. Asuka, H. Nakano, M. Hashida, M. Katto, N. Abe, M. Fujita, Periodic microstructures produced by femtosecond laser irradiation on titanium plate. Vacuum 80(11–12), 1346–1350 (2006)

    Article  ADS  Google Scholar 

  20. J. Bonse, J. Kruger, Femtosecond laser-induced periodic surface structures. J. Laser Appl. 24, 042006 (2012)

    Article  ADS  Google Scholar 

  21. W.A. Loesberg, J. Te Riet, F.C. Van Delft, P. Schon, C.G. Figdor, S. Speller, J.J. van Loon, X.F. Walboomers, J.A. Jansen, The threshold at which substrate nanogroove dimensions may influence fibroblast alignment and adhesion. Biomaterials 28(27), 3944–3951 (2007)

    Article  Google Scholar 

  22. W.O. Soboyejo, B. Nemetski, S. Allameh, N. Marcantonio, C. Mercer, J. Ricci, Interactions between MC3T3-E1 cells and textured Ti6Al4V surfaces. J. Biomed. Mater. Res. Banner 62(1), 56–72 (2002)

    Article  Google Scholar 

  23. V. Dumas, A. Guignandon, L. Vico, C. Mauclair, X. Zapata, M.T. Linossier, W. Bouleftour, J. Granier, S. Peyroche, J.C. Dumas, H. Zahouani, Femtosecond laser nano/micro patterning of titanium influences mesenchymal stem cell adhesion and commitment. Biomed. Mater. 10(5), 055002 (2015)

    Article  Google Scholar 

  24. S. Shaikh, S. Kedia, A.K. Singh, K. Sharma, S. Sinha, Surface treatment of 45S5, bioglass using femtosecond laser to achieve superior growth of HAP. J. Laser Appl. 29, 022004 (2017)

    Article  ADS  Google Scholar 

  25. S. Sinha, A.K. Singh, Self-assembled microcones generated on solid surface through pulsed laser irradiation. Adv. Mater. Lett. 4(6), 492–496 (2013)

    Article  Google Scholar 

  26. B. Xu, H.Y. Sohn, Y. Mohassab, Y. Lan, Structures, preparation and applications of titanium suboxides. RSC Adv. 6, 79706–79722 (2016)

    Article  Google Scholar 

  27. Y. Levy, T.J. Derrien, N.M. Bulgakova, E.L. Gurevich, T. Mocek, Relaxation dynamics of femtosecond-laser-induced temperature modulation on the surfaces of metals and semiconductors. Appl. Surf. Sci. 374, 157–164 (2016)

    Article  ADS  Google Scholar 

  28. Y. Chen, J. Mao, Sol–gel preparation and characterization of black titanium oxides Ti2O3 and Ti3O5. J. Mater. Sci. Mater. Electron. 25(3), 1284–1288 (2014)

    Article  Google Scholar 

  29. S.M. Oh, J.G. Li, T. Ishigaki, Nanocrystalline TiO2 powders synthesized by in-flight oxidation of TiN in thermal plasma: mechanisms of phase selection and particle morphology evolution. J. Mater. Res. 20(2), 529–537 (2005)

    Article  ADS  Google Scholar 

  30. J. Lu, H. Yu, C. Chen, Biological properties of calcium phosphate biomaterials for bone repair: a review. RSC Adv. 8, 2015–2033 (2018)

    Article  Google Scholar 

  31. Y. Zhao, T.Y. Xiong, Formation of bioactive titania films under specific anodisation conditions. Surf. Eng. 28(5), 371–376 (2012)

    Article  ADS  Google Scholar 

  32. A. Michelot, S. Sarda, C. Audin, E. Deydier, E. Manoury, R. Poli, C. Rey, Spectroscopic characterisation of HAP and nanocrystalline apatite with grafted aminopropyltriethoxysilane: nature of silane–surface interaction. J. Mater. Sci. 50(17), 5746–5757 (2015)

    Article  ADS  Google Scholar 

  33. H. Shalom, Y. Feldman, R. Rosentsveig, I. Pinkas, I. Kaplan-Ashiri, A. Moshkovich, V. Perfilyev, L. Rapoport, R. Tenne, Electrophoretic deposition of hydroxyapatite film containing re-doped MoS2 nanoparticles. Int. J. Mol. Sci. 19(3), 657 (2018)

    Article  Google Scholar 

  34. L.M. Liu, P. Crawford, P. Hu, The interaction between adsorbed OH and O2 on TiO2 surfaces. Prog. Surf. Sci. 84, 155–176 (2008)

    Article  ADS  Google Scholar 

  35. H.H. Huang, C.T. Ho, T.H. Lee, T.L. Lee, K.K. Liao, F.L. Chen, Effect of surface roughness of ground titanium on initial cell adhesion. Biomol. Eng. 21(3–5), 93–97 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shazia Shaikh or Sucharita Sinha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikh, S., Kedia, S., Majumdar, A.G. et al. In vitro bioactivity and biocompatibility of femtosecond laser-modified Ti6Al4V alloy. Appl. Phys. A 124, 821 (2018). https://doi.org/10.1007/s00339-018-2238-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2238-5

Navigation