Applied Physics A

, 124:490 | Cite as

Epitaxial growth of perovskite (111) 0.65PMN-0.35PT films directly on wurtzite GaN (0002) surface

  • Xiaoke Xu
  • Junliang Zhao
  • Guanjie Li
  • Jiayue Xu
  • Xiaomin Li


PMN-PT films were deposited on GaN/sapphire substrates via pulsed laser deposition without any intermediate buffer layers, and epitaxial perovskite (111) 0.65PMN-0.35PT films on wurtzite GaN(0002) surfaces were obtained by adjusting the experimental parameters including substrates temperature and O\(_2\) pressure. The microstructures and electrical properties of PMN-PT/GaN heterostructure were characterized by reflection high-energy electron diffraction, X-ray diffraction, atom force microscope, transmission electron microscope and polarization–electric field (P–E) measurements. The as-grown PMN-PT films exhibit highly (111) oriented perovskite crystal structure. The in-plane orientation relationship of PMN-PT film with respect to GaN is (111)\(\times\)[11-2] PMN-PT//(0002)\(\times\)[11-20] GaN. A domain matching epitaxy model is proposed to account for the epitaxial growth mechanism of PMN-PT on GaN. The P–E curves show typical ferroelectric characteristics, while the remnant polarization and coercive field are about 18.1 \(\upmu\)C/cm\(^2\) and 75 kV/cm, respectively. This work provides a good start point for the further development of advanced electronic devices based on the integration of ferroelectric PMN-PT with wide-gap GaN semiconductor.



This work was supported by the National Key Research and Development Program of China (2016YFA0201103), the National Natural Science Foundation of China (Grant nos. 51572280 and 51602329), and the Foundation of the Shanghai Committee for Science and Technology (Grant no. 15JC1403600).


  1. 1.
    X. G. Chen, X. Zhang, M. A. Koten, H. H. Chen, Z. Y. Xiao, L. Zhang, J. E. Shield, P. A. Dowben, X. Hong, Adv. Mater. 29 (31) (2017)Google Scholar
  2. 2.
    J.H. Park, G.S. Jang, H.Y. Kim, K.H. Seok, H.J. Chae, S.K. Lee, S.K. Joo, Sci. Rep. 6, 24734 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    J.B. Zhu, Z.G. Yin, Z. Fu, Y.J. Zhao, X.W. Zhang, X. Liu, J.B. You, X.X. Li, J.H. Meng, H. Liu, J.L. Wu, J. Cryst. Growth 459, 178 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    W. Han, S.M. Yang, H.T. Li, Y.K. Qi, J.J. Gu, J. Inorg. Mater. 31(4), 388 (2016)CrossRefGoogle Scholar
  5. 5.
    Z. Liang, S.H. Pei, F. Qin, Y.D. Zheng, H. Zhao, Z.G. Zhang, J.T. Zeng, W. Ruan, G.R. Li, W.W. Cao, J. Lumin. 181, 128 (2017)CrossRefGoogle Scholar
  6. 6.
    M. Boota, E.P. Houwman, M. Dekkers, M.D. Nguyen, K.H. Vergeer, G. Lanzara, G. Koster, G. Rijnders, Sci. Technol. Adv. Mat. 17(1), 45 (2016)CrossRefGoogle Scholar
  7. 7.
    T.S. Ko, D.Y. Lin, C.F. Lin, C.W. Chang, J.C. Zhang, S.J. Tu, J. Cryst. Growth 464, 175 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    H.W. Hou, Z. Liu, J.H. Teng, T. Palacios, S.J. Chua, Sci. Rep. 7, 46664 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    L.Z. Hao, J. Zhu, Y.J. Liu, S.L. Wang, H.Z. Zeng, X.W. Liao, Y.Y. Liu, H.W. Lei, Y. Zhang, W.L. Zhang, Y.R. Li, Thin Solid Films 520(7), 3035 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Y. -S. Kang, Q. Fan, B. Xiao, Y. I. Alivov, J. Q. Xie, N. Onojima, S. -J. Cho, Y. -T. Moon, H. Lee, D. Johnstone, H. Morkoc, Y. -S Park, Appl. Phys. Lett. 88(12), 123508 (2006)Google Scholar
  11. 11.
    J.-Y. Hwang, C.-R. Cho, S.-Y. Jeong, J. Cryst. Growth 271(1–2), 50 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    S.Q. Deng, S.B. Cheng, Y. Zhang, G.T. Tan, J. Zhu, J. Am. Ceram. Soc. 100(6), 2373 (2017)CrossRefGoogle Scholar
  13. 13.
    L.Z. Hao, J. Zhu, W.B. Luo, H.Z. Zeng, Y.R. Li, W. Huang, X.W. Liao, Y. Zhang, Appl. Phys. Lett. 95(23), 232907 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    J.B. Li, G.H. Rao, G.Y. Liu, J.R. Chen, L. Lu, X.N. Jing, S.L. Li, J.K. Liang, J. Alloy. Compd. 425(1–2), 373 (2006)CrossRefGoogle Scholar
  15. 15.
    S.H. Baek, M.S. Rzchowski, V.A. Aksyuk, Mrs. Bull. 37(11), 1022 (2012)CrossRefGoogle Scholar
  16. 16.
    S. Zhukov, D. Eder-Goy, S. Fedosov, B.X. Xu, H. von Seggern, Sci. Rep. 8, 4597 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    W.S. Tsang, K.Y. Chan, C.L. Mak, K.H. Wong, Appl. Phys. Lett. 83(8), 1599 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    P. Miao, Y. Zhao, N. Luo, D. Zhao, A. Chen, Z. Sun, M. Guo, M. Zhu, H. Zhang, Q. Li, Sci. Rep. 6, 19965 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    H. Ur\(\check{s}\)i\(\check{c}\), M. Hrovat, J. Holc, J. Tellier, S. Drnov\(\check{s}\)ek, N. Guiblin, B. Dkhil, M. Kosec, J. Eur. Ceram. Soc. 30(10), 2081 (2010)Google Scholar
  20. 20.
    Q.X. Zhu, M.M. Yang, M. Zheng, R.K. Zheng, L.J. Guo, Y. Wang, J.X. Zhang, X.M. Li, H.S. Luo, X.G. Li, Adv. Funct. Mater. 25(7), 1111 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaoke Xu
    • 1
    • 2
  • Junliang Zhao
    • 3
  • Guanjie Li
    • 2
  • Jiayue Xu
    • 1
  • Xiaomin Li
    • 2
  1. 1.School of Materials Science and EngineeringShanghai Institute of TechnologyShanghaiChina
  2. 2.State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of CeramicsChinese Academy of ScienceShanghaiChina
  3. 3.NanoArc Technology Pte. Ltd.SingaporeSingapore

Personalised recommendations