Advertisement

Applied Physics A

, 124:492 | Cite as

Synthesis of Cu@Ag core–shell nanoparticles for characterization of thermal stability and electric resistivity

Article
  • 9 Downloads

Abstract

A two-step synthetic method has been utilized to prepare copper–silver (Cu@Ag) core–shell particles with thin Ag shell coated over a Cu core of initial diameter of 80 ± 5 nm. The formation of core–shell particles is characterized by transmetallation reaction on the surface of the Cu particles, where copper atoms function as the reducer for silver ions. The morphological characterization of Cu@Ag reveals that excess supply of Ag-based reagent produces nanostructures with enhanced core–shell diameter, increased shell thickness, and agglomeration of Ag in the bulk surface, whereas limited supply of Ag species results in nanoparticles with imperfect enveloping of Cu core—making them susceptible to oxidation. Experiments with TGA and DSC verify that thermal stability of core–shell nanoparticles is achieved for the specimen undisturbed by agglomeration and imperfect enveloping effects. Though the electrical resistivity of Cu@Ag nanoparticles increases in general with larger molar proportion of Cu, its increment rate is small for the limit [Cu]:[Ag]=4:1 and then higher beyond it. The sample with [Cu]:[Ag]=4:1, characterized by higher thermal stability, slowest oxidation speed, lower electric resistivity( 64.24 \(\mu \Omega\) cm), and negligible agglomeration effect, is recommended for industrial applications.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos: 51571049), a “Research Fund for International Young Scientists” of National Natural Science Foundation of China (Grant Number: 51750110504) and China Postdoctoral Science Foundation (Grant Number: 2017M611215).

References

  1. 1.
    R. Béjaud, J. Durinck, S. Brochard, Twin-interface interactions in nanostructured Cu/Ag: molecular dynamics study. Acta Mater. 144, 314–324 (2018)CrossRefGoogle Scholar
  2. 2.
    X. Liu, J. Du, Y. Shao, S.F. Zhao, K.F. Yao, One-pot preparation of nanoporous Ag-Cu@Ag core-shell alloy with enhanced oxidative stability and robust antibacterial activity. Sci. Rep. 7(1), 1–10 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Ali, V. Kumar, R.G. Sonkawade, M.D. Shirsat, A.S. Dhaliwal, Two-step electrochemical synthesis of Au nanoparticles decorated polyaniline nanofiber. Vacuum 93, 79–83 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    P. Konarski, I. Iwanejko, M. Ćwil, Core-shell morphology of welding fume micro- and nanoparticles. User Model. User-adapt. Interact. 70(2–3), 385–389 (2003)Google Scholar
  5. 5.
    J. Cure, A. Glaria, V. Colliere, P.F. Fazzini, A. Mlayah, B. Chaudret, P. Fau, Remarkable decrease in the oxidation rate of Cu nanocrystals controlled by alkylamine ligands. J. Phys. Chem. C 121(9), 5253–5260 (2017)CrossRefGoogle Scholar
  6. 6.
    D. Wang, D. Li, J. Muhammad, Y. Zhou, Z. Wang, L. Sansan, X. Dong, Z. Zhang,<i>In situ</i> synthesis and electronic transport of the carbon-coated Ag@C/MWCNT nanocomposite. RSC Adv. 8(14), 7450–7456 (2018)CrossRefGoogle Scholar
  7. 7.
    J. Gröttrup, V. Postica, D. Smazna, M. Hoppe, V. Kaidas, Y.K. Mishra, O. Lupan, R. Adelung, UV detection properties of hybrid ZnO tetrapod 3-D networks. Vacuum 146, 492–500 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    J. Tashkhourian, S.F. Nami-Ana, A sensitive electrochemical sensor for determination of gallic acid based on SiO2nanoparticle modified carbon paste electrode. Mater. Sci. Eng. C 52, 103–110 (2015)CrossRefGoogle Scholar
  9. 9.
    J. Zhao, Y. Cheng, H. Shen, Y.Y. Hui, T. Wen, H.-C. Chang, O. Gong, G. Lu, Light emission from plasmonic nanostructures enhanced with fluorescent nanodiamonds. Sci. Rep. 8(1), 3605 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    A. Hazra, S.M. Hossain, A.K. Pramanick, M. Ray, Gold-silver nanostructures: plasmon–plasmon interaction. Vacuum 146, 437–443 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    G. Radnóczi, E. Bokányi, Z. Erdélyi, F. Misják, Size dependent spinodal decomposition in Cu–Ag nanoparticles. Acta Mater. 123, 82–89 (2017)CrossRefGoogle Scholar
  12. 12.
    S. Bhanushali, P. Ghosh, A. Ganesh, W. Cheng, 1D copper nanostructures: progress, challenges and opportunities. Small 11(11), 1232–1252 (2015)CrossRefGoogle Scholar
  13. 13.
    Y.H. Peng, C.H. Yang, K.T. Chen, S.R. Popuri, C.H. Lee, B.S. Tang, Study on synthesis of ultrafine Cu–Ag core-shell powders with high electrical conductivity. Appl. Surf. Sci. 263, 38–44 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    M. Cazayous, C. Langlois, T. Oikawa, C. Ricolleau, A. Sacuto, Cu–Ag core–shell nanoparticles: a direct correlation between micro-Raman and electron microscopy. Phys. Rev. B Condens. Matter Mater. Phys. 73(11), 1–4 (2006)CrossRefGoogle Scholar
  15. 15.
    C.-H. Tsai, S.-Y. Chen, J.-M. Song, I.-G. Chen, H.-Y. Lee, Thermal stability of Cu@Ag coreshell nanoparticles. Corros. Sci. 74, 123–129 (2013)CrossRefGoogle Scholar
  16. 16.
    C.K. Kim, G.J. Lee, M.K. Lee, C.K. Rhee, A novel method to prepare Cu@Ag core-shell nanoparticles for printed flexible electronics. Powder Technol. 263, 1–6 (2014)CrossRefGoogle Scholar
  17. 17.
    J. Sopoušek, J. Pinkas, P. Brož, J. Buršík, V. Vykoukal, D. Škoda, A. Stýskalík, O. Zobač, J. Vešál, A. Hrdlička, and J. Šimbera. Ag–Cu colloid synthesis: Bimetallic nanoparticle characterisation and thermal treatment. J. Nanomater. 2014, 1–13 (2014)Google Scholar
  18. 18.
    W. Li, Y. Wang, M. Wang, W. Li, J. Tan, C. You, M. Chen, Synthesis of stable Cu core Ag shell & Ag particles for direct writing flexible paper-based electronics. RSC Adv. 6(67), 62236–62243 (2016)CrossRefGoogle Scholar
  19. 19.
    S.H. Wu, Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol. J. Colloid Interface Sci. 259(2), 282–286 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Chen, D.-L. Peng, D. Lin, Preparation and magnetic properties of nickel nanoparticles via the thermal decomposition of nickel organometallic precursor in alkylamines. Nanotechnology 18(50), 505703 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Z.G. Wu, M. Munoz, O. Montero, The synthesis of nickel nanoparticles by hydrazine reduction. Adv. Powder Technol. 21(2), 165–168 (2010)CrossRefGoogle Scholar
  22. 22.
    C. Thenmozhi, V. Manivannan, E. Kumar, S. VeeraRethinaMurugan, Synthesis and characterization of SnO2 nanoparticles by microwave assisted solution method. Int. Res. J. Eng. Technol. 02, 2634–2640 (2015)Google Scholar
  23. 23.
    H. Siddiqui, M.S. Qureshi, F.Z. Haque, Effect of copper precursor salts: Facile and sustainable synthesis of controlled shaped copper oxide nanoparticles. Optik (Stuttg) 127(11), 4726–4730 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    R. He, Y.-C. Wang, X. Wang, Z. Wang, G. Liu, W. Zhou, L. Wen, Q. Li, X. Wang, X. Chen, J. Zeng, J.G. Hou, Facile synthesis of pentacle goldcopper alloy nanocrystals and their plasmonic and catalytic properties. Nat. Commun. 5, 1–10 (2014)ADSGoogle Scholar
  25. 25.
    J. Wen. Preparation of surface modification copper nanoparticles and their tribological performances. PhD dissertation, Southeast University, (2011)Google Scholar
  26. 26.
    D.V. Goia, E. Matijević, Preparation of monodispersed metal particles. New J. Chem. 22(11), 1203–1215 (1998)CrossRefGoogle Scholar
  27. 27.
    Y.S. Park, C.Y. An, P.K. Kannan, N. Seo, K. Zhuo, T.K. Yoo, C.H. Chung, Fabrication of dendritic silver-coated copper powders by galvanic displacement reaction and their thermal stability against oxidation. Appl. Surf. Sci. 389, 865–873 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    J. Sarkar and D.K. Das. Study of the effect of varying core diameter, shell thickness and strain velocity on the tensile properties of single crystals of CuAg coreshell nanowire using molecular dynamics simulations. J. Nanoparticle Res. 20(1), 9 (2018)Google Scholar
  29. 29.
    J.Q. Qi, H.Y. Tian, L.T. Li, H.L.W. Chan, Fabrication of CuO nanoparticle interlinked microsphere cages by solution method. Nanoscale Res. Lett. 2(2), 107–111 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    I.E. Stewart, M.J. Kim, B.J. Wiley, Effect of morphology on the electrical resistivity of silver nanostructure films. ACS Appl. Mater. Interfaces 9(2), 1870–1879 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringDalian University of TechnologyDalianChina
  2. 2.School of Mechanical EngineeringDalian University of TechnologyDalianChina

Personalised recommendations