Applied Physics A

, 124:396 | Cite as

Multiferroic and magnetoelectric studies on BMFO–NZFO nanocomposites

  • B. Dhanalakshmi
  • Pratap Kollu
  • Crispin H. W. Barnes
  • B. Parvatheeswara Rao
  • P. S. V. Subba Rao


Bismuth ferrite-based multiferroic composites, x⋅Bi0.95Mn0.05FeO3 − (1 − x)⋅Ni0.5Zn0.5Fe2O4, where x takes the values of 0.2, 0.4, 0.5, 0.6 and 0.8, have been prepared by combining sol–gel autocombustion and solid-state methods. Phase identification of the samples was done by X-ray diffraction analysis. SEM–EDX measurements on the samples were used to evaluate the microstructural aspects and quantitative evaluation of the samples. Room temperature P–E loop measurements on the samples were done under the application of external electric fields in the range from 0 to 6 kV/mm at a frequency of 50 Hz to understand the ferroelectric strength of the compounds. Magnetic studies on the samples were made by M–H loop measurements in the field range of ± 10 kOe. Magnetoelectric coupling measurements were made using a dynamic lock-in test set-up. The results indicate that the mixing of nickel–zinc ferrite in Bi0.95Mn0.05FeO3, in spite of the enhanced conductivity, has produced considerable improvements in saturation magnetization while retaining the remnant ferroelectric polarization in reasonable magnitudes to obtain improved M–E coupling. Among all the composites, the composite with x = 0.5 has resulted better M–E performance.



One of the authors (Pratap Kollu) thanks The Royal Society London for extending partial support during the course of investigations and UGC NRC, School of Physics, University of Hyderabad, India.


  1. 1.
    M. Fiebig, T. Lottermoser, D. Fröhlich, A.V. Goltsev, R.V. Pisarev, Nature 419, 818 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759–765 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.-W. Cheong, Nature 429, 392–395 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu et al., Science 299, 1719–1722 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    C.-W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103, 031101 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    K.J. Young, W.B. Chung, R. Sangwoo, L. Jung-Hoon, M.J. Hyun, J. Korean Phys. Soc. 58, 817 (2011)CrossRefGoogle Scholar
  7. 7.
    M.S. Bernardo, Bol. Soc. Esp. Ceram. Vidr. 53, 1–14 (2014)CrossRefGoogle Scholar
  8. 8.
    M. Kumar, K.L. Yadav, Appl. Phys. Lett. 91, 28–31 (2007)Google Scholar
  9. 9.
    Y.J. Zhang, H.G. Zhang, J.H. Yin, H.W. Zhang, J.L. Chen, W.Q. Wang et al., J. Magn. Magn. Mater. 322, 2251–2255 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    D.K. Pradhan, R.N.P. Chowdhury, T.K. Nath, Appl. Nanosci. 2, 261–273 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    S.C. Mazumdar, M.N.I. Khan, Md. Fakhrul Islam, A.K.M. Akther Hossain, J. Magn. Magn. Mater. 390, 61–69 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    A. Testino, L. Mitoseriu, V. Buscaglia, M.T. Buscaglia, I. Pallecchi, A.S. Albuquerque, V. Calzona, D. Marré, A.S. Siri, P. Nanni, J. Eur. Ceram. Soc. 26, 3031–3036 (2006)CrossRefGoogle Scholar
  13. 13.
    M.D. Rahaman, S.K. Saha, T.N. Ahmed, D.K. Saha, A.K.M. Akther Hossain, J. Magn. Magn. Mater. 371, 112–120 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    M. Arora, M. Kumar, Ceram. Int. 41, 5705–5712 (2015)CrossRefGoogle Scholar
  15. 15.
    K. Bhattacharjee, C.K. Ghosh, M.K. Mitra, G.C. Das, S. Mukherjee, K. K. Chattopadhyay, J. Nanopart. Res. 4, 739–750 (2011)CrossRefGoogle Scholar
  16. 16.
    Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Z.G. Liu, Appl. Phys. Lett. 84, 1731–1733 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    B. Dhanalakshmi, P. Kollu, B. Parvatheeswara Rao, P.S.V. Subba Rao, Ceram. Int. 42, 2186–2197 (2016)CrossRefGoogle Scholar
  18. 18.
  19. 19.
    B. Dhanalakshmi, Ph.D. Thesis, Andhra University, India, 2016 (unpublished work)Google Scholar
  20. 20.
    N. Kumar, A. Shukla, C. Behera, R.N.P. Choudhary, J. Alloys Compd. 688, 858–869 (2016)CrossRefGoogle Scholar
  21. 21.
    A. Shukla, N. Kumar, C. Behera, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 27, 1209–1216 (2016)CrossRefGoogle Scholar
  22. 22.
    N. Kumar, A. Shukla, R.N.P. Choudhary, Phys. Lett. A 381, 2721–2730 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    W. Zhang, H. Wang, F. Zhang, Z. Qian, W. Su, J. Mater. Sci. Technol. 26, 547 (2010)CrossRefGoogle Scholar
  24. 24.
    B. Dhanalakshmi, K. Pratap, B. Parvatheeswara Rao, P.S.V. Subba Rao, J. Alloys Compd. 676, 193–201 (2016)CrossRefGoogle Scholar
  25. 25.
    Z.M. Tian, S.L. Yuan, X.L. Wang, X.F. Zheng, S.Y. Yin, C.H. Wang, L. Liu, J. Appl. Phys. 106, 103912 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    R. Gerber, G. Elbinger, J. Phys. C Solid State Phys. 3, 1363 (1970)ADSCrossRefGoogle Scholar
  27. 27.
    T. Lottermoser, M. Fiebig, Phys. Rev. B 70, 220407 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    N. Kumar, A. Shukla, C. Behera, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 27, 7115–7123 (2016)CrossRefGoogle Scholar
  29. 29.
    G. Srinivasan, E.T. Rasmussen, B.J. Levin, R. Hayes, Phys. Rev. B 65, 134402 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    N. Kumar, A. Shukla, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 28, 6673–6684 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Vignan’s Institute of Information TechnologyVisakhapatnamIndia
  2. 2.CASEST, School of PhysicsUniversity of HyderabadHyderabadIndia
  3. 3.Thin Film Magnetism Group, Cavendish Laboratory, Department of PhysicsUniversity of CambridgeCambridgeUK
  4. 4.Department of PhysicsAndhra UniversityVisakhapatnamIndia

Personalised recommendations