Advertisement

Applied Physics A

, 124:395 | Cite as

The influence of thermal annealing on the characteristics of Au/Ni Schottky contacts on n-type 4H-SiC

  • E. Omotoso
  • F. D. Auret
  • E. Igumbor
  • S. M. Tunhuma
  • H. T. Danga
  • P. N. M. Ngoepe
  • B. A. Taleatu
  • W. E. Meyer
Article

Abstract

The effects of isochronal annealing on the electrical, morphological and structural characteristics of Au/Ni/4H-SiC Schottky barrier diodes (SBDs) have been studied. Current–voltage (IV), capacitance–voltage (CV), deep-level transient spectroscopy, scanning electron microscope (SEM) and X-ray diffraction measurements were employed to study the thermal effect on the characteristics of the SBDs. Prior to thermal annealing of Schottky contacts, the IV measurements results confirmed the good rectification behaviour with ideality factor of 1.06, Schottky barrier height of 1.20 eV and series resistance of 7 Ω. The rectification properties after annealing was maintained up to an annealing temperature of 500 °C, but deviated slightly above 500 °C. The uncompensated ionized donor concentration decreased with annealing temperature, which could be attributed to out-diffusion of the 4H-SiC into the Au/Ni contacts and decrease in bonding due to formation of nickel silicides. We observed the presence of four deep-level defects with energies 0.09, 0.11, 0.16 and 0.65 eV below the conduction band before and after the isochronal annealing up to 600 °C. The conclusion drawn was that annealing did not affect the number of deep-level defects present in Au/Ni/4H-SiC contacts. The variations in electrical properties of the devices were attributed to the phase transformations and interfacial reactions that occurred after isochronal annealing.

Notes

Acknowledgements

The authors would like to acknowledge the financial support of the University of Pretoria. This work was based on research supported by the National Research Foundation (NRF) of South Africa, Grant number 98961. The grant holders acknowledge that opinions expressed, findings and conclusions arrived at are those of the authors and are not necessarily to be attributed to the NRF.

References

  1. 1.
    L.M. Tolbert, B. Ozpineci, S.K. Islam, M.S. Chinthavali, Wide bandgap semiconductors for utility applications, power and energy systems. Proceedings 1, 317–321 (2003)Google Scholar
  2. 2.
    M. Siad, M. Abdesslam, A.C. Chami, Role of carbon in the formation of ohmic contact in Ni/4HSiC and Ni/Ti/4HSiC. Appl. Surf. Sci. 258(18), 6819–6822 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    R. Madar, Materials science: silicon carbide in contention. Nature 430(7003), 974–975 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    S. Yamada, B.-S. Song, T. Asano, S. Noda, Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths. Appl. Phys. Lett. 99(20), 2011021–2011023 (2011)CrossRefGoogle Scholar
  5. 5.
    Y.M. Reddy, M. Nagaraj, S.S. Naik, V.R. Reddy, Annealing effects on electrical properties and interfacial reactions of Ni/Cu Schottky rectifiers on n-type InP. J. Mod. Phys. 17, 538 (2012)CrossRefGoogle Scholar
  6. 6.
    A. Chawanda, S.M.M. Coelho, F.D. Auret, W. Mtangi, C. Nyamhere, J.M. Nel, M. Diale, Effect of thermal treatment on the characteristics of iridium Schottky barrier diodes on n-Ge (100). J. Alloy. Compd. 513, 44–49 (2012)CrossRefGoogle Scholar
  7. 7.
    L.-C. Han, H.-J. Shen, K.-A. Liu, Y.-Y. Wang, Y.-D. Tang, Y. Bai, H.-Y. Xu, Y.-D. Wu, X.-Y. Liu, Annealing temperature influence on the degree of inhomogeneity of the Schottky barrier in Ti/4H-SiC contacts. Chin. Phys. B 23(12), 127302 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    C. Ramesha, V.R. Reddy, Influence of annealing temperature on the electrical and structural properties of palladium Schottky contacts on n-type 4H-SiC. Superlattices Microstruct. 76, 55–65 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    S. Khanna, A. Noor, S. Neeleshwar, M. Tyagi, Effect of annealing temperature on the electrical characteristics of platinum/4H-SiC Schottky barrier diodes. Int. J. Electron. 98(12), 1733–1741 (2011)CrossRefGoogle Scholar
  10. 10.
    E. Omotoso, W.E. Meyer, F.D. Auret, A.T. Paradzah, M.J. Legodi, Electrical characterization of deep levels created by bombarding nitrogen-doped 4H-SiC with alpha-particle irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact Mater. At. 371, 312–316 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    A.T. Paradzah, F.D. Auret, M.J. Legodi, E. Omotoso, M. Diale, Electrical characterization of 5.4 MeV alpha-particle irradiated 4H-SiC with low doping density. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 358, 112–116 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    E. Omotoso, W.E. Meyer, F.D. Auret, M. Diale, P.N.M. Ngoepe, Response of Ni/4H-SiC Schottky barrier diodes to alpha-particle irradiation at different fluences. Phys. B 480, 196–200 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    E. Omotoso, W.E. Meyer, F.D. Auret, A.T. Paradzah, M. Diale, S.M.M. Coelho, P.J. Janse, van Rensburg, The influence of high energy electron irradiation on the Schottky barrier height and the Richardson constant of Ni/4H-SiC Schottky diodes. Mater. Sci. Semicond. Process. 39, 112–118 (2015)CrossRefGoogle Scholar
  14. 14.
    T. Marinova, A. Kakanakova-Georgieva, V. Krastev, R. Kakanakov, M. Neshev, L. Kassamakova, O. Noblanc, C. Arnodo, S. Cassette, C. Brylinski, B. Pecz, G. Radnoczi, G. Vincze, Nickel based ohmic contacts on SiC. Mater. Sci. Eng. B 46(1–3), 223–226 (1997)CrossRefGoogle Scholar
  15. 15.
    S.M. Sze, K.K. Ng, Physics of semiconductor devices, John Wiley & Sons, Hoboken (2006)CrossRefGoogle Scholar
  16. 16.
    F.D. Auret, P.N.K. Deenapanray, Deep level transient spectroscopy of defects in high-energy light-particle irradiated Si. Crit. Rev. Solid State Mater. Sci. 29(1), 1–44 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Cao, L. Nyborg, Contact formation on silicon carbide by use of nickel and tantalum in a materials science point of view, properties and applications of silicon carbide, InTech (2011)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • E. Omotoso
    • 1
    • 2
  • F. D. Auret
    • 1
  • E. Igumbor
    • 1
  • S. M. Tunhuma
    • 1
  • H. T. Danga
    • 1
  • P. N. M. Ngoepe
    • 1
  • B. A. Taleatu
    • 2
  • W. E. Meyer
    • 1
  1. 1.Department of PhysicsUniversity of PretoriaHatfieldSouth Africa
  2. 2.Department of PhysicsObafemi Awolowo UniversityIle-IfeNigeria

Personalised recommendations