Skip to main content
Log in

Fabrication of the tea saponin functionalized reduced graphene oxide for fast adsorptive removal of Cd(II) from water

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A novel graphene-based material of tea saponin functionalized reduced graphene oxide (TS-RGO) was synthesized via a facil thermal method, and it was characterized as the absorbent for Cd(II) removal from aqueous solutions. The factors on adsorption process including solution pH, contact time, initial concentration of Cd(II) and background electrolyte cations were studied to optimize the conditions for maximum adsorption at room temperature. The results indicated that Cd(II) adsorption was strongly dependent on pH and could be strongly affected by background electrolytes and ionic strength. The optimal pH and required equilibrium time was 6.0 and 10 min, respectively. The Cd(II) removal decreased with the presence of background electrolyte cations (Na+ < Ca2+ < Al3+). The adsorption kinetics of Cd(II) followed well with the pseudo-second-order model. The adsorption isotherm fitted well to the Langmuir model, indicating that the adsorption was a monolayer adsorption process occurred on the homogeneous surfaces of TS-RGO. The maximum monolayer adsorption capacity was 127 mg/g at 313 K and pH 6.0. Therefore, the TS-RGO was considered to be a cost-effective and promising material for the removal of Cd(II) from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Alvand, F. Shemirani, Microchim. Acta 181, 181–188 (2014)

    Article  Google Scholar 

  2. C. Namasivayam, K. Ranganathan, Water Res. 29, 1737–1744 (1995)

    Article  Google Scholar 

  3. D. Mohan, K.P. Singh, Water Res. 36, 2304–2318 (2002)

    Article  Google Scholar 

  4. S. Wu, K. Zhang, X. Wang, J. Yong, Chem. Eng. J. 262, 1292–1302 (2015)

    Article  Google Scholar 

  5. N. Kongsricharoern, C. Polprasert, Water Sci. Technol. 34, 109–116 (1996)

    Google Scholar 

  6. E. Pehlivan, T. Altun, J. Hazard. Mater. 134, 149–156 (2006)

    Article  Google Scholar 

  7. G. Zeng, Y. Liu, L. Tang, Chem. Eng. J. 259, 153–160 (2015)

    Article  Google Scholar 

  8. U. Divrikli, A.A. Kartal, M. Soylak, L. Elci, J. Hazard. Mater. 145, 459–464 (2007)

    Article  Google Scholar 

  9. A.S. Cukrowski, J. Mol. Liq. 202, 165–175 (2015)

    Article  Google Scholar 

  10. G. Mckay, H.S. Blair, J.R. Gardner, J. Appl. Polym. Sci. 27, 3043–3057 (2010)

    Article  Google Scholar 

  11. M. Goyal, Environ. Sci. Technol. 29, 109A–109A (1995)

    Google Scholar 

  12. G. Zhao, J. Li, X. Ren, C. Chen, X. Wang, Environ. Sci. Technol. 45, 10454–10462 (2011)

    Article  ADS  Google Scholar 

  13. B. Yu, J. Xu, J.H. Liu, S.T. Yang, J. Luo, J. Environ. Chem. Eng. 1, 1044–1050 (2013)

    Article  Google Scholar 

  14. W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, Nat. Chem. 1, 403 (2009)

    Article  Google Scholar 

  15. Y. Wu, H. Luo, H. Wang, C. Wang, J. Zhang, Z. Zhang, J. Colloid Interface Sci. 394, 183–191 (2013)

    Article  ADS  Google Scholar 

  16. Z. Wu, H. Zhong, X. Yuan, H. Wang, L. Wang, Water Res. 67, 330–344 (2014)

    Article  Google Scholar 

  17. X. Yuan, Z. Wu, H. Zhong, H. Wang, X. Chen, L. Leng, L. Jiang, Z. Xiao, G. Zeng, Environ. Sci. Pollut. Res. Int. 23, 18657 (2016)

    Article  Google Scholar 

  18. S. Song, L. Zhu, W. Zhou, Environ. Pollut. 156, 1368–1370 (2008)

    Article  Google Scholar 

  19. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  20. R. Qu, Y. Zhang, C. Sun, C. Wang, C. Ji, H. Chen, P. Yin, J. Chem. Eng. Data 55, 1496–1504 (2010)

    Article  Google Scholar 

  21. H. Wang, X. Yuan, Y. Wu, H. Huang, G. Zeng, Y. Liu, X. Wang, N. Lin, Y. Qi, Appl. Surf. Sci. 279, 432–440 (2013)

    Article  ADS  Google Scholar 

  22. J. Huang, Z. Wu, L. Chen, Y. Sun, J. Mol. Liq. 209, 753–758 (2015)

    Article  Google Scholar 

  23. V.H. Pham, D.P. Hai, T.T. Dang, S.H. Hur, E.J. Kim, B.S. Kong, S. Kim, S.C. Jin, J. Mater. Chem. 22, 10530–10536 (2012)

    Article  Google Scholar 

  24. C. Cheng, J. Wang, Y. Xin, A. Li, C. Philippe, J. Hazard. Mater. 264, 332–341 (2014)

    Article  Google Scholar 

  25. X. Yuan, Z. Wu, H. Zhong, H. Wang, X. Chen, L. Leng, L. Jiang, Z. Xiao, G. Zeng, Environ. Sci. Pollut. Res. 23, 1–15 (2016)

    Article  Google Scholar 

  26. X. Mi, G. Huang, W. Xie, W. Wang, Y. Liu, J. Gao, Carbon 50, 4856–4864 (2012)

    Article  Google Scholar 

  27. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen, R.S. Ruoff, Carbon 45, 1558–1565 (2007)

    Article  Google Scholar 

  28. R. Amarowicz, R.B. Pegg, K. Okubo, Mol. Nutr. Food Res. 40, 342–343 (2010)

    Google Scholar 

  29. J.N. Tiwari, K. Mahesh, N.H. Le, K.C. Kemp, R. Timilsina, R.N. Tiwari, K.S. Kim, Carbon 56, 173–182 (2013)

    Article  Google Scholar 

  30. R. Sitko, E. Turek, B. Zawisza, E. Malicka, E. Talik, J. Heimann, A. Gagor, B. Feist, R. Wrzalik, Dalton Trans. 42, 5682 (2013)

    Article  Google Scholar 

  31. G. Zhao, X. Ren, X. Gao, X. Tan, J. Li, C. Chen, Y. Huang, X. Wang, Dalton Trans. 40, 10945–10952 (2011)

    Article  Google Scholar 

  32. X.J. Hu, H.Z. Jin, X.H. Liu, W.D. Zhang, Helv. Chim. Acta. 42, 306–394 (2011)

    Article  Google Scholar 

  33. L. Xiong, C. Chen, Q. Chen, J. Ni, J. Hazard. Mater. 189, 741 (2011)

    Article  Google Scholar 

  34. V. Aggarwal, H. Li, S.A.B. And, B.J. Teppen, Environ. Sci. Technol. 40, 894–899 (2006)

    Article  ADS  Google Scholar 

  35. J.N. Wang, Y. Zhou, A.M. Li, L. Xu, J. Hazard. Mater. 176, 1018 (2010)

    Article  Google Scholar 

  36. X. Peng, F. Hu, H. Dai, Q. Xiong, C. Xu, J. Taiwan Inst. Chem. Eng. 65, 472–481 (2016)

    Article  Google Scholar 

  37. J. Eastoe, J.S. Dalton, Adv. Colloid Interface Sci 85, 103–144 (2000)

    Article  Google Scholar 

  38. Z. Wang, X. Zhang, X. Wu, J.G. Yu, X.Y. Jiang, Z.L. Wu, X. Hao, J. Sol Gel Sci. Technol. 1–10 (2017)

  39. G. Zhao, J. Li, X. Wang, Chem. Eng. J. 173, 185–190 (2011)

    Article  Google Scholar 

  40. S.A. Kumar, S.P. Pandey, N. Thakur, H. Parab, J. Hazard. Mater. 262, 265–273 (2013)

    Article  Google Scholar 

  41. D.M. Griffith, B. Szőcs, T. Keogh, K.Y. Suponitsky, E. Farkas, P. Bugly, C.J. Oacute, Marmion, J. Inorg. Biochem. 105, 763 (2011)

    Article  Google Scholar 

  42. M.F. Li, Y.G. Liu, G.M. Zeng, S.B. Liu, X.J. Hu, J. Colloid Interface Sci. 485, 269–279 (2017)

    Article  ADS  Google Scholar 

  43. Z. Wang, G. Liu, H. Zheng, F. Li, Bioresour. Technol. 177, 308 (2015)

    Article  Google Scholar 

  44. W. Liu, J. Ni, X. Yin, Water Res 53, 12–25 (2014)

    Article  ADS  Google Scholar 

  45. Y. Sun, Q. Wang, C. Chen, X. Tan, X. Wang, Environ. Sci. Technol. 46, 6020 (2012)

    Article  ADS  Google Scholar 

  46. S.W.N. Wan, N.F.M. Ariff, A. Hashim, M. Hanafiah, Clean Soil Air Water 38, 394–400 (2010)

    Article  Google Scholar 

  47. T.G. Vargo, J.A. Gardella, A vacuum surfaces films. J. Vacuum Sci. Technol. 7, 1733–1741 (1989)

    Article  ADS  Google Scholar 

  48. T.G. Vargo Jr., J.A. Gardella, A vacuum surfaces films. J. Vacuum Sci. Technol. 7, 1733–1741 (1989)

    Article  ADS  Google Scholar 

  49. I. Langmuir, J. Frankl. Inst. 184, 102–105 (1917)

    Article  Google Scholar 

  50. A.A. Atia, A.M. Donia, A.M. Yousif, Sep. Purif. Technol. 61, 348–357 (2008)

    Article  Google Scholar 

  51. R. Balasubramanian, S.V. Perumal, K. Vijayaraghavan, Ind. Eng. Chem. Res. 48, 2093–2099 (2009)

    Article  Google Scholar 

  52. X. Deng, L. Lü, H. Li, L. Fang, J. Hazard. Mater. 183, 923–930 (2010)

    Article  Google Scholar 

  53. K. Jyotsna Goel, C. Kadirvelu, A. Rajagopal, V.K. Garg, Ind. Eng. Chem. Res. 45, 6531–6537 (2006)

    Article  Google Scholar 

  54. L.V. Gurgel, L.F. Gil, Water Res. 43, 4479 (2009)

    Article  Google Scholar 

  55. C. Moreno-Castilla, M.A. Alvarez-Merino, M.V. López-Ramón, J. Rivera-Utrilla, Langmuir ACS J. Surf. Colloids. 20, 8142–8148 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The study was financially supported by the Program for Changjiang Scholars and Innovative Research Team in University (IRT-13R17), the National Natural Science Foundation of China (51679085, 51378192, 51378190, 51521006), the Fundamental Research Funds for the Central Universities of China (531107050930).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifeng Liu.

Ethics declarations

Conflict of interest

Authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Liu, Z., Wu, Z. et al. Fabrication of the tea saponin functionalized reduced graphene oxide for fast adsorptive removal of Cd(II) from water. Appl. Phys. A 124, 398 (2018). https://doi.org/10.1007/s00339-018-1816-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1816-x

Navigation