Applied Physics A

, 124:397 | Cite as

Enhanced performance of ultracapacitors using redox additive-based electrolytes

  • Dharmendra Jain
  • Jitendra Kanungo
  • S. K. Tripathi


Different concentrations of potassium iodide (KI) as redox additive had been added to 1 M sulfuric acid (H2SO4) electrolyte with an aim of enhancing the capacitance and energy density of ultracapacitors via redox reactions at the interfaces of electrode–electrolyte. Ultracapacitors were fabricated using chemically treated activated carbon as electrode with H2SO4 and H2SO4–KI as an electrolyte. The electrochemical performances of fabricated supercapacitors were investigated by impedance spectroscopy, cyclic voltammetry and charge–discharge techniques. The maximum capacitance ‘C’ was observed with redox additives-based electrolyte system comprising 1 M H2SO4–0.3 M KI (1072 F g− 1), which is very much higher than conventional 1 M H2SO4 (61.3 F g− 1) aqueous electrolyte-based ultracapacitors. It corresponds to an energy density of 20.49 Wh kg− 1 at 2.1 A g− 1 for redox additive-based electrolyte, which is six times higher as compared to that of pristine electrolyte (1 M H2SO4) having energy density of only 3.36 Wh kg− 1. The temperature dependence behavior of fabricated cell was also analyzed, which shows increasing pattern in its capacitance values in a temperature range of 5–70 °C. Under cyclic stability test, redox electrolyte-based system shows almost 100% capacitance retention up to 5000 cycles and even more. For comparison, ultracapacitors based on polymer gel electrolyte polyvinyl alcohol (PVA) (10 wt%)—{H2SO4 (1 M)–KI (0.3 M)} (90 wt%) have been fabricated and characterized with the same electrode materials.



The authors are grateful to Madhya Pradesh Council of Science and Technology, Madhya Pradesh, India, for providing financial support to Dr. S.K.Tripathi through Grant-in-Aid for Scientific Research vide Sanction No. [3683/CST/R&D/Phy & Engg. Sc/2012; Bhopal, Dated: 03.11.2012]. The authors are also greatly acknowledge the Jaypee University of Engineering and Technology Guna, Madhya Pradesh, India, for providing experimental facilities and other infrastructural facilities to perform experimental work. The authors are thankful to Dr. Amrita Jain for providing her support in the execution of this work.


  1. 1.
    B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Springer, New York, 1999). (eBook ISBN No: 978-1-4757-3058-6$4)CrossRefGoogle Scholar
  2. 2.
    P.J. Hall, M. Mirzaeian, S.I. Fletcher, F.B. Sillars, A.J.R. Rennie, G.O.S. Bey, G. Wilson, A. Cruden, R. Carter, Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ Sci 3, 1238–1251 (2010)CrossRefGoogle Scholar
  3. 3.
    D.S. Su, R. Schlogl, Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. ChemSusChem 3, 136–168 (2010)CrossRefGoogle Scholar
  4. 4.
    A.K. Tripathi, Y.L. Verma, V.K. Shalu, L. Singh, H. Balo, S.K. Gupta, R.K. Singh, Singh, Quasi solid-state electrolytes based on ionic liquid (IL) and ordered mesoporous matrix MCM-41 for supercapacitor application. J. Solid State Electrochem. 21, 3365–3371 (2017)CrossRefGoogle Scholar
  5. 5.
    R. Kotz, M. Carlen, Principles and applications of electrochemical capacitors. Electrochim. Acta 45, 2483–2498 (2000)CrossRefGoogle Scholar
  6. 6.
    P. Simon, P.Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    C. Nishino, operating principles, current market and technical trends. J. Power Sources 60, 137–147 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    S.A. Hashmi, R.J. Latham, R.G. Linford, W.S. Schlindwein, Studies on all solid state electric double layer capacitors using proton and lithium ion conducting polymer electrolytes. J. Chem. Soc. Faraday Trans. 93, 4177–4182 (1997)CrossRefGoogle Scholar
  9. 9.
    J.G. Lavin, D.R. Boyington, J. Lahijani, B. Nysten, J.P. Issi, The correlation of thermal conductivity with electrical resistivity in mcsophase pitchbased carbon fiber. Carbon 31, 1001–1002 (1993)CrossRefGoogle Scholar
  10. 10.
    T. Osaka, X. Liu, M. Nojima, T. Momma, An electrochemical double layer capacitor using an activated carbon electrode with gel electrolyte binder. J. Electrochem. Soc. 146, 1724–1729 (1999)CrossRefGoogle Scholar
  11. 11.
    M.E. Beauharnois, D.D. Edie, M.C. Thies, Carbon fibers from mixtures of AR and supercritically extracted mesophases. Carbon 39, 2101–2111 (2001)CrossRefGoogle Scholar
  12. 12.
    E. Beaudrouet, A. Le Gal La Salle, D. Guyomard, Nanostructured manganese dioxides: Synthesis and properties as supercapacitor electrode materials. Electrochim. Acta 54, 1240–1248 (2009)CrossRefGoogle Scholar
  13. 13.
    E. Khoo, J.M. Wang, J. Ma, P.S. Lee, Electrochemical energy storage in a β Na0.33V2O5 nanobelt network and its application for supercapacitors. J. Mater. Chem. 20, 8368–8374 (2010)CrossRefGoogle Scholar
  14. 14.
    Z. Li, H. Bao, X. Miao, X. Chen, A facile route to growth of γ-MnOOH nanorods and electrochemical capacitance properties. J. Colloid Interface Sci. 357, 286–291 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    S.T. Senthilkumar, R. Kalai-Selvan, J.S. Melo, Redox additive/active electrolytes: a novel approach to enhance the performance of supercapacitors. J. Mater. Chem. A 1, 12386–12394 (2013)CrossRefGoogle Scholar
  16. 16.
    J. Wang, Y.L. Xu, X. Chen, X.F. Sun, Capacitance properties of single wall carbon nanotube/polypyrrole composite films. Compos. Sci. Technol. 67, 2981–2985 (2007)CrossRefGoogle Scholar
  17. 17.
    S.K. Tripathi, A. Jain, A. Gupta, M. Kumari, Studies on redox supercapacitor using electrochemically synthesized polypyrrole as electrode material using blend polymer gel electrolyte. Indian J. Pure Appl. Phys. 5, 315–319 (2013)Google Scholar
  18. 18.
    P. Gomez-Romero, M. Chojak, K. Cuentas-Gallegos, J.A. Asensio, P.J. Kulesza, N. Casan-Pastor, M. Lira-Cantu, Hybrid organic–inorganic nanocomposite materials for application in solid state electrochemical supercapacitors. Electrochem. Commun. 5, 149–153 (2003)CrossRefGoogle Scholar
  19. 19.
    S.R. Sivakkumar, R. Saraswathi, Performance evaluation of poly(Nmethylaniline) and polyisothianaphthene in charge storage devices. J. Power Sources 137, 322–328 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)CrossRefGoogle Scholar
  21. 21.
    S. Roldan, M. Granda, R. Menendez, R. Santamaria, C. Blanco, Mechanisms of energy storage in carbon-based supercapacitors modified with a quinoid redox-active electrolyte. J. Phys. Chem. C 115, 17606–17611 (2011)CrossRefGoogle Scholar
  22. 22.
    S. Sathyamoorthi, V. Suryanarayanan, D. Velayutham, Organo-redox shuttle promoted protic ionic liquid electrolyte for supercapacitor. J. Power Sources 274, 1135–1139 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    P. Navalpotro, J. Palma, M. Anderson, R. Marcilla, High performance hybrid supercapacitors by using para Benzoquinone ionic liquid redox electrolyte. J. Power Sources 306, 711–717 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    J. Park, V. Kumar, X. Wang, P.S. Lee, W. Kim, Investigation of charge transfer kinetics at carbon/hydroquinone interfaces for redox-active electrolyte supercapacitors. ACS Appl. Mater. Interfaces 9, 33728–33734 (2017)CrossRefGoogle Scholar
  25. 25.
    S.T. Senthilkumar, R. Kalai-Selvan, N. Ponpandian, J.S. Melo, Y.S. Lee, Improved performance of electric double layer capacitor using redox additive (VO2+/VO2 +) aqueous electrolyte. J. Mater. Chem. A 1, 7913–7919 (2013)CrossRefGoogle Scholar
  26. 26.
    B. Wang, J.A. Macia-Agullo, D.G. Prendiville, X. Zheng, X.D. Liu, D.Y. Zhang, S.W. Boettcher, X. Ji, G.D. Stucky, A hybrid redox-supercapacitor system with anionic catholyte and cationic anolyte. J. Electrochem. Soc. 161, A1090-A1093 (2014)Google Scholar
  27. 27.
    Z. Liang, J. Wen, B. Guo, Z. Cheng, Y. Qiu, P. Xu, H. Fan, C. He, Improved performance of supercapacitors constructed with activated carbon papers as electrodes and vanadyl sulfate as redox electrolyte. Ionics 22, 1253–1258 (2016)CrossRefGoogle Scholar
  28. 28.
    S. Roldan, Z. Gonzalez, C. Blanco, M. Granda, R. Menendez, R. Santamaria, Redox-active electrolyte for carbon nanotube-based electric double layer capacitors. Electrochim. Acta 56, 3401–3405 (2011)CrossRefGoogle Scholar
  29. 29.
    J. Wu, H. Yu, L. Fan, G. Luo, J. Lin, M. Huang, A simple and high effective electrolyte mediated with p-phenylenediamine for supercapacitor. J. Mater. Chem. 22, 19025–19030 (2012)CrossRefGoogle Scholar
  30. 30.
    Z.J. Zhang, Y.Q. Zhu, X.Y. Chen, Y. Cao, Pronounced improvement of supercapacitor capacitance by using redox active electrolyte of p-phenylenediamine. Electrochim. Acta 176, 941 948 (2015)Google Scholar
  31. 31.
    S. Roldan, M. Granda, R. Menendez, R. Santamaria, C. Blanco, Supercapacitor modified with methylene blue as redox active electrolyte. Electrochim. Acta 83, 241–246 (2012)CrossRefGoogle Scholar
  32. 32.
    H. Yu, J. Wu, J. Lin, L. Fan, M. Huang, Y. Lin, Y. Li, F. Yu, Z. Qiu, A reversible redox strategy for SWCNT based supercapacitors using a high performance electrolyte. ChemPhysChem 14, 394–399 (2013)CrossRefGoogle Scholar
  33. 33.
    B. Ye, C. Gong, M. Huang, Y. Tu, X. Zheng, L. Fan, J. Lin, J. Wu, Improved performance of a CoTe//AC asymmetric supercapacitor using a redox additive aqueous electrolyte. RSC Adv. 8, 7997–8006 (2018)CrossRefGoogle Scholar
  34. 34.
    G.K. Veerasubramani, K. Krishnamoorthy, P. Pazhamalai, S.J. Kim, Enhanced electrochemical performances of graphene based solid-state flexible cable type supercapacitor using redox mediated polymer gel electrolyte. Carbon 105, 638–648 (2016)CrossRefGoogle Scholar
  35. 35.
    S.K. Jain, A. Tripathi, M. Gupta, Kumari, Fabrication and characterization of electrochemical double layer capacitors using ionic liquid-based gel polymer electrolyte with chemically treated activated charcoal electrodes. J. Solid State Electrochem. 17, 713–726 (2013)CrossRefGoogle Scholar
  36. 36.
    S.T. Senthilkumar, R. Kalai Selvan, Y.S. Lee, J.S. Melo, Electric double layer capacitor and its improved specific capacitance using redox additive electrolyte. J. Mater. Chem. A 1, 1086–1095 (2013)CrossRefGoogle Scholar
  37. 37.
    Z.J. Zhang, X.Y. Chen, Nitrogen-doped nanoporous carbon materials derived from folic acid: Simply introducing redox additive of p-phenylenediamine into KOH electrolyte for greatly improving the supercapacitor performance. J. Electroanal. Chem. 764, 45–55 (2016)CrossRefGoogle Scholar
  38. 38.
    P.L. Taberna, C. Portet, P. Simon, Electrode surface treatment and electrochemical impedance spectroscopy study on carbon/carbon supercapacitors. Appl. Phys. A 82, 639–646 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    C. Lei, F. Markoulidis, Z. Ashitaka, C. Lekakou, Reduction of porous carbon/Al contact resistance for an electric double-layer capacitor (EDLC). Electrochim. Acta 92, 183–187 (2013)CrossRefGoogle Scholar
  40. 40.
    J. Wang, M. Chen, C. Wang, J. Wang, J. Zheng, Preparation of mesoporous carbons from amphiphilic carbonaceous material for high performance electric double layer capacitors. J. Power Sources 196, 550–558 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    P.L. Taberna, P. Simon, J.F. Fauvarque, Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J. Electrochem. Soc. 150, A292–A300 (2003)CrossRefGoogle Scholar
  42. 42.
    S.T. Senthilkumar, R. Kalai-Selvan, N. Ponpandian, J.S. Melo, Redox additive aqueous polymer gel electrolyte for an electric double layer capacitor. RSC Adv. 2, 8937–8940 (2012)CrossRefGoogle Scholar
  43. 43.
    R.S. Hastak, P. Sivaraman, D.D. Potphode, K. Shashidhara, A.B. Samui, All solid supercapacitor based on activated carbon and poly [2,5-benzimidazole] for high temperature application. Electrochim. Acta 59, 296–303 (2012)CrossRefGoogle Scholar
  44. 44.
    G. Lota, E. Frackowiak, Striking capacitance of carbon/iodide interface. Electrochem. Commun. 11, 87–90 (2009)CrossRefGoogle Scholar
  45. 45.
    J. Menzel, K. Fic, M. Meller, E. Frackowiak, The effect of halide ion concentration on capacitor performance. J. Appl. Electrochem. 44, 439–445 (2014)CrossRefGoogle Scholar
  46. 46.
    H. Yu, J. Wu, L. Fan, K. Xu, X. Zhong, Y. Lin, J. Lin, Improvement of the performance for quasi-solid-state supercapacitor by using PVA–KOH–KI polymer gel electrolyte. Electrochim. Acta 56, 6881–6886 (2011)CrossRefGoogle Scholar
  47. 47.
    Z. Gao, L. Zhang, J. Chang, Z. Wang, D. Wu, F. Xu, Y. Guo, K. Jiang, Catalytic electrode-redox electrolyte supercapacitor system with enhanced capacitive performance. Chem. Eng. J. 335, 590–599 (2018)CrossRefGoogle Scholar
  48. 48.
    L. Liu, R. Feng, Y. Pan, X. Zheng, L. Bai, Nanoporous carbons derived from poplar catkins for high performance supercapacitors with a redox active electrolyte of p-phenylenediamine. J. Alloy. Compd. 748, 473–480 (2018)CrossRefGoogle Scholar
  49. 49.
    Z. Khan, B. Senthilkumar, S. Lim, R. Shanker, Y. Kim, H. Ko, Redox-additive-enhanced high capacitance supercapacitors based on Co2P2O7 nanosheets. Adv. Mater. Interfaces 4, 1700059 (2017)CrossRefGoogle Scholar
  50. 50.
    M. Zhang, G. Wang, L. Lub, T. Wang, H. Xu, C. Yu, H. Li, W. Tian, Improving the electrochemical performances of active carbon-based supercapacitors through the combination of introducing functional groups and using redox additive electrolyte. J. Saudi Chem. Soc. (2018).
  51. 51.
    K. Sun, Z. Zhang, H. Peng, G. Zhao, G. Ma, Z. Lei, Hybrid symmetric supercapacitor assembled by renewable corn silks based porous carbon and redox-active electrolytes. Mater. Chem. Phys. (2018).
  52. 52.
    Z. Gao, X. Liu, J. Chang, D. Wu, F. Xu, L. Zhang, W. Du, K. Jiang, Graphene incorporated, N doped activated carbon as catalytic electrode in redox active electrolyte mediated supercapacitor. J. Power Sources 337, 25–35 (2017)ADSCrossRefGoogle Scholar
  53. 53.
    L.Q. Fan, J. Zhong, C.Y. Zhang, J.H. Wu, Y.L. Wei, Improving the energy density of quasi-solid-state supercapacitors by assembling two redox-active gel electrolytes. Int. J. Hydrogen Energy 41, 5725–5732 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Dharmendra Jain
    • 1
  • Jitendra Kanungo
    • 1
  • S. K. Tripathi
    • 2
  1. 1.Department of Electronics & Communication EngineeringJaypee University of Engineering and TechnologyGunaIndia
  2. 2.Department of PhysicsMahatma Gandhi Central UniversityEast ChamparanIndia

Personalised recommendations