Advertisement

Applied Physics A

, 124:376 | Cite as

Layer-by-layer modification of thin-film metal–semiconductor multilayers with ultrashort laser pulses

  • S. A. Romashevskiy
  • P. A. Tsygankov
  • S. I. Ashitkov
  • M. B. Agranat
Article
  • 171 Downloads

Abstract

The surface modifications in a multilayer thin-film structure (50-nm alternating layers of Si and Al) induced by a single Gaussian-shaped femtosecond laser pulse (350 fs, 1028 nm) in the air are investigated by means of atomic-force microscopy (AFM), scanning electron microscopy (SEM), and optical microscopy (OM). Depending on the laser fluence, various modifications of nanometer-scale metal and semiconductor layers, including localized formation of silicon/aluminum nanofoams and layer-by-layer removal, are found. While the nanofoams with cell sizes in the range of tens to hundreds of nanometers are produced only in the two top layers, layer-by-layer removal is observed for the four top layers under single pulse irradiation. The 50-nm films of the multilayer structure are found to be separated at their interfaces, resulting in a selective removal of several top layers (up to 4) in the form of step-like (concentric) craters. The observed phenomenon is associated with a thermo-mechanical ablation mechanism that results in splitting off at film–film interface, where the adhesion force is less than the bulk strength of the used materials, revealing linear dependence of threshold fluences on the film thickness.

Notes

Acknowledgements

The work has been carried out at the “Femtosecond Laser Centre” of Joint Institute for High Temperatures of the Russian Academy of Sciences (JIHT RAS). We are indebted to A.V. Ovchinnikov and D.S. Sitnikov for help with the experiments.

References

  1. 1.
    J. Gudde, J. Hohlfeld, J.G. Muller, E. Matthias, Damage threshold dependence on electron–phonon coupling in Au and Ni films. Appl. Surf. Sci. 127–129, 40–45 (1998)CrossRefGoogle Scholar
  2. 2.
    R.D. Murphy, B. Torralva, S.M. Yalisove, The role of an interface on Ni film removal and surface roughness after irradiation by femtosecond laser pulse. Appl. Phys. Lett. 102, 181602 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    D.S. Ivanov, L.V. Zhigilei, Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films. Phys. Rev. B 68, 064114 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    L. Gallais, E. Bergeret, B. Wang, M. Guerin, E. Bènevent, Ultrafast laser ablation of metal films on flexible substrates. Appl. Phys. A 115, 177–188 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    S. Lee, D. Yang, S. Nikumb, Femtosecond laser patterning of Ta0.1W0.9Ox/ITO thin film stack. Appl. Surf. Sci. 253, 4740–4747 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    T.H.R. Crawford, J. Yamanaka, E.M. Hsu, G.A. Botton, H.K. Haugen, Femtosecond laser irradiation of metal and thermal oxide layers on silicon: studies utilising cross-sectional transmission electron microscopy. Appl. Phys. A 91(3), 473–478 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    C.-Y. Chen, C. Tien-Li, Multilayered structuring of thin-film PV modules by ultrafast laser ablation. Microelectron. Eng. 143, 41–47 (2015)CrossRefGoogle Scholar
  8. 8.
    J. Bonse, G. Mann, J. Krüger, M. Marcinkowski, M. Eberstein, Femtosecond laser-induced removal of silicon nitride layers from doped and textured silicon wafers used in photovoltaics. Thin Solid Films 542, 420–425 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    S. Changho, A. Daehwan, K. Dongsik, Removal of oxides from copper surface using femtosecond and nanosecond pulsed lasers. Appl. Surf. Sci. 349, 361–367 (2015)CrossRefGoogle Scholar
  10. 10.
    M. Reichling, A. Bodemann, N. Kaiser, Defect induced laser damage in oxide multilayer coatings for 248 nm. Thin Solid Films 320, 264–279 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    S. Ho, K. Kumar, K.C. Kenneth, J. Lee, P.R. Li, Herman, Interferometric femtosecond laser processing for nanostructuring inside thin film. Adv. Opt. Technol. 3, 499–513 (2014)ADSGoogle Scholar
  12. 12.
    K. Kumar, K.C. Kenneth, J. Lee, J. Li, N.P. Nogami, P.R. Kherani, Herman, Quantized structuring of transparent films with femtosecond laser interference., ‎Light Sci. Appl. 3, e157 (2014)CrossRefGoogle Scholar
  13. 13.
    B. Gaković, G.D. Tsibidis, E. Skoulas, S.M. Petrović, B. Vasić, E. Stratakis, Partial ablation of Ti/Al nano-layer thin film by single femtosecond laser pulse. J. Appl. Phys. 122, 223106 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    S.I. Kudryashov, B. Gakovic, P.A. Danilov, S.M. Petrovic, D. Milovanovic, A.A. Rudenko, A.A. Ionin, Single-shot selective femtosecond laser ablation of multi-layered Ti/Al and Ni/Ti films: “cascaded” heat conduction and interfacial thermal effects. Appl. Phys. Lett. 112, 023103 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    C. Reitmaier, F. Walther, H. Lengfellner, Transverse thermoelectric devices. Appl. Phys. A 99, 717–722 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    D. Gunnarsson, J.S. Richardson-Bullock, M.J. Prest, H.Q. Nguyen, A.V. Timofeev, V.A. Shah, T.E. Whall, E.H.C. Parker, D.R. Leadley, M. Myronov, M. Prunnila, Interfacial engineering of semiconductor–superconductor junctions for high performance micro-coolers. Sci. Rep. 5, 17398 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    A. Tankut, M. Karaman, E. Ozkol, S. Canli, R. Turan, Structural properties of a-Si films and their effect on aluminum induced crystallization. AIP Adv. 5, 107114 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    C.-F. Han, G.-S. Hu, T.-C. Li, J.F. Lina, Effects of thicknesses of Si/Al/Si composite films and annealing temperature on metal-induced si crystallization efficiency, voids, and electrical properties. Thin Solid Films 599, 151–160 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    A. Bendavid, P.J. Martin, C. Comte, L.K. Randeniya, D. Weller, Synthesis of Al–Si nano-template substrates for surface-enhanced Raman scattering application. Thin Solid Films 585, 45–49 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    B.C. Tappan, S.A. Steiner III, E.P. Luther, Nanoporous metal foams. Angew. Chem. Int. Ed. 49, 4544–4565 (2010)CrossRefGoogle Scholar
  21. 21.
    S. Sen, D. Liu, G. Tayhas, R. Palmore, Electrochemical reduction of CO2 at copper nanofoams. ACS Catal. 4, 3091–3095 (2014)CrossRefGoogle Scholar
  22. 22.
    J.M. Liu, Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt. Lett. 7(5), 196–198 (1982)ADSCrossRefGoogle Scholar
  23. 23.
    M.A. Green, Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients. Sol. Energy Mater. Sol. Cells 92, 1305–1310 (2008)CrossRefGoogle Scholar
  24. 24.
    J. Bonse, K.-W. Brzezinka, A.J. Meixner, Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy. Appl. Surf. Sci. 221, 215–230 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    K. Sokolowski-Tinten, J. Bialkowski, D. von der Linde, Ultrafast laser-induced order-disorder transitions in semiconductors. Phys. Rev. B 51(20), 14186 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    J.P. McDonald, V.R. Mistry, K.E. Ray, S.M. Yalisove, Femtosecond-laser-induced delamination and blister formation in thermal oxide films on silicon (100). Appl. Phys. Lett. 88, 153121 (2006).  https://doi.org/10.1063/1.2193777 ADSCrossRefGoogle Scholar
  27. 27.
    S.I. Anisimov, B.S. Luk’yanchuk, Selected problems of laser ablation theory. Phys. Usp. 45, 293–324 (2002)CrossRefGoogle Scholar
  28. 28.
    D.P. Korfiatis, K.-A.Th Thoma, J.C. Vardaxoglou, Numerical modeling of ultrashort-pulse laser ablation of silicon. Appl. Surf. Sci. 255, 7605–7609 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    D.S. Ivanov, B. Rethfeld, The effect of pulse duration on the interplay of electron heat conduction and electron–phonon interaction: photo-mechanical versus photo-thermal damage of metal targets. Appl. Surf. Sci. 255, 9724–9728 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    M.B. Agranat, S.I. Anisimov, S.I. Ashitkov, A.V. Ovchinnikov, P.S. Kondratenko, D.S. Sitnikov, V.E. Fortov, On the mechanism of the absorption of femtosecond laser pulses in the melting and ablation of Si and GaAs. JETP Lett. 83(11), 501–504 (2006)CrossRefGoogle Scholar
  31. 31.
    A.A. Ionin, S.I. Kudryashov, A.A. Samokhin, Material surface ablation produced by ultrashort laser pulses. Phys. Usp. 60, 149–160 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    S.I. Anisimov, N.A. Inogamov, Yu..V. Petrov, V.A. Khokhlov, V.V. Zhakhovskii, K. Nishihara, M.B. Agranat, S.I. Ashitkov, P.S. Komarov, Interaction of short laser pulses with metals at moderate intensities. App. Phys. A 92, 939–943 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, S.I. Anisimov, Ultrafast thermal melting of laser-excited solids by homogeneous nucleation. Phys. Rev. B 65, 092103 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    S.I. Ashitkov, N.A. Inogamov, V.V. Zhakhovskii, Yu..N. Emirov, M.B. Agranat, I.I. Oleinik, S.I. Anisimov, V.E. Fortov, Formation of nanocavities in the surface layer of an aluminum target irradiated by a femtosecond laser pulse. JETP Lett. 95(4), 176–181 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    S.I. Anisimov, N.A. Inogamov, Y.V. Petrov, V.A. Khokhlov, V.V. Zhakhovskii, K. Nishihara, M.B. Agranat, S.I. Ashitkov, P.S. Komarov, Thresholds for front-side ablation and rear-side spallation of metal foil irradiated by femtosecond laser pulse. Appl. Phys. A 92, 797–801 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    S.I. Ashitkov, P.S. Komarov, A.V. Ovchinnikov, E.V. Struleva, V.V. Zhakhovskii, N.A. Inogamov, M.B. Agranat, Ablation and nanostructuring of metals by femtosecond laser pulses. Quantum Electron. 44(6), 535–539 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    M.B. Agranat, S.I. Anisimov, S.I. Ashitkov, V.V. Zhakhovskii, N.A. Inogamov, P.S. Komarov, A.V. Ovchinnikov, V.E. Fortov, V.A. Khokhlov, V.V. Shepelev, Strength properties of an aluminum melt at extremely high tension rates under the action of femtosecond laser pulses. JETP Lett. 91(9), 471–477 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    A.E. Mayer, P.N. Mayer, Continuum model of tensile fracture of metal melts and its application to a problem of high-current electron irradiation of metals. J. Appl. Phys. 118, 035903 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    C.Y. Ho, R.W. Powell, P.E. Liley, Thermal conductivity of the elements. J. Phys. Chem. Ref. Data 1(2), 279–421 (1972)ADSCrossRefGoogle Scholar
  40. 40.
    Yu..A. Volkov, L.S. Palatnik, A.T. Pugachev, Investigation of the thermal properties of thin aluminum films. Zh. Eksp. Teor. Fiz. 70, 2244–2250 (1976)ADSGoogle Scholar
  41. 41.
    F. Volklein, H. Balles, A microstructure for measurement of thermal conductivity of polysilicon thin films. J. Microelectromech. Syst. 1(4), 193–196 (1992)CrossRefGoogle Scholar
  42. 42.
    S. Uma, A.D. McConnell, M. Asheghi, K. Kurabayashi, K.E. Goodson, Temperature-dependent thermal conductivity of undoped polycrystalline silicon layers. Int. J. Thermophys. 22, 605–616 (2001)CrossRefGoogle Scholar
  43. 43.
    P.E. Hopkins, Thermal transport across solid interfaces with nanoscale imperfections: effects of roughness, disorder, dislocations, and bonding on thermal boundary conductance. ISRN Mech. Eng. 682586 (2013).  https://doi.org/10.1155/2013/682586
  44. 44.
    N. Yang, T. Luo, K. Esfarjani, A. Henry, Z. Tian, J. Shiomi, Y. Chalopin, B. Li, G. Chen, Thermal interface conductance between aluminum and silicon by molecular dynamics simulations. J. Comput. Theor. Nanosci. 12(2), 168–174 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • S. A. Romashevskiy
    • 1
  • P. A. Tsygankov
    • 2
  • S. I. Ashitkov
    • 1
  • M. B. Agranat
    • 1
  1. 1.Joint Institute for High Temperatures of the Russian Academy of SciencesMoscowRussian Federation
  2. 2.National Research University “Bauman Moscow State Technical University”MoscowRussian Federation

Personalised recommendations