Skip to main content
Log in

Layer-by-layer modification of thin-film metal–semiconductor multilayers with ultrashort laser pulses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The surface modifications in a multilayer thin-film structure (50-nm alternating layers of Si and Al) induced by a single Gaussian-shaped femtosecond laser pulse (350 fs, 1028 nm) in the air are investigated by means of atomic-force microscopy (AFM), scanning electron microscopy (SEM), and optical microscopy (OM). Depending on the laser fluence, various modifications of nanometer-scale metal and semiconductor layers, including localized formation of silicon/aluminum nanofoams and layer-by-layer removal, are found. While the nanofoams with cell sizes in the range of tens to hundreds of nanometers are produced only in the two top layers, layer-by-layer removal is observed for the four top layers under single pulse irradiation. The 50-nm films of the multilayer structure are found to be separated at their interfaces, resulting in a selective removal of several top layers (up to 4) in the form of step-like (concentric) craters. The observed phenomenon is associated with a thermo-mechanical ablation mechanism that results in splitting off at film–film interface, where the adhesion force is less than the bulk strength of the used materials, revealing linear dependence of threshold fluences on the film thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Gudde, J. Hohlfeld, J.G. Muller, E. Matthias, Damage threshold dependence on electron–phonon coupling in Au and Ni films. Appl. Surf. Sci. 127–129, 40–45 (1998)

    Article  Google Scholar 

  2. R.D. Murphy, B. Torralva, S.M. Yalisove, The role of an interface on Ni film removal and surface roughness after irradiation by femtosecond laser pulse. Appl. Phys. Lett. 102, 181602 (2013)

    Article  ADS  Google Scholar 

  3. D.S. Ivanov, L.V. Zhigilei, Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films. Phys. Rev. B 68, 064114 (2003)

    Article  ADS  Google Scholar 

  4. L. Gallais, E. Bergeret, B. Wang, M. Guerin, E. Bènevent, Ultrafast laser ablation of metal films on flexible substrates. Appl. Phys. A 115, 177–188 (2014)

    Article  ADS  Google Scholar 

  5. S. Lee, D. Yang, S. Nikumb, Femtosecond laser patterning of Ta0.1W0.9Ox/ITO thin film stack. Appl. Surf. Sci. 253, 4740–4747 (2007)

    Article  ADS  Google Scholar 

  6. T.H.R. Crawford, J. Yamanaka, E.M. Hsu, G.A. Botton, H.K. Haugen, Femtosecond laser irradiation of metal and thermal oxide layers on silicon: studies utilising cross-sectional transmission electron microscopy. Appl. Phys. A 91(3), 473–478 (2008)

    Article  ADS  Google Scholar 

  7. C.-Y. Chen, C. Tien-Li, Multilayered structuring of thin-film PV modules by ultrafast laser ablation. Microelectron. Eng. 143, 41–47 (2015)

    Article  Google Scholar 

  8. J. Bonse, G. Mann, J. Krüger, M. Marcinkowski, M. Eberstein, Femtosecond laser-induced removal of silicon nitride layers from doped and textured silicon wafers used in photovoltaics. Thin Solid Films 542, 420–425 (2013)

    Article  ADS  Google Scholar 

  9. S. Changho, A. Daehwan, K. Dongsik, Removal of oxides from copper surface using femtosecond and nanosecond pulsed lasers. Appl. Surf. Sci. 349, 361–367 (2015)

    Article  Google Scholar 

  10. M. Reichling, A. Bodemann, N. Kaiser, Defect induced laser damage in oxide multilayer coatings for 248 nm. Thin Solid Films 320, 264–279 (1998)

    Article  ADS  Google Scholar 

  11. S. Ho, K. Kumar, K.C. Kenneth, J. Lee, P.R. Li, Herman, Interferometric femtosecond laser processing for nanostructuring inside thin film. Adv. Opt. Technol. 3, 499–513 (2014)

    ADS  Google Scholar 

  12. K. Kumar, K.C. Kenneth, J. Lee, J. Li, N.P. Nogami, P.R. Kherani, Herman, Quantized structuring of transparent films with femtosecond laser interference., ‎Light Sci. Appl. 3, e157 (2014)

    Article  Google Scholar 

  13. B. Gaković, G.D. Tsibidis, E. Skoulas, S.M. Petrović, B. Vasić, E. Stratakis, Partial ablation of Ti/Al nano-layer thin film by single femtosecond laser pulse. J. Appl. Phys. 122, 223106 (2017)

    Article  ADS  Google Scholar 

  14. S.I. Kudryashov, B. Gakovic, P.A. Danilov, S.M. Petrovic, D. Milovanovic, A.A. Rudenko, A.A. Ionin, Single-shot selective femtosecond laser ablation of multi-layered Ti/Al and Ni/Ti films: “cascaded” heat conduction and interfacial thermal effects. Appl. Phys. Lett. 112, 023103 (2018)

    Article  ADS  Google Scholar 

  15. C. Reitmaier, F. Walther, H. Lengfellner, Transverse thermoelectric devices. Appl. Phys. A 99, 717–722 (2010)

    Article  ADS  Google Scholar 

  16. D. Gunnarsson, J.S. Richardson-Bullock, M.J. Prest, H.Q. Nguyen, A.V. Timofeev, V.A. Shah, T.E. Whall, E.H.C. Parker, D.R. Leadley, M. Myronov, M. Prunnila, Interfacial engineering of semiconductor–superconductor junctions for high performance micro-coolers. Sci. Rep. 5, 17398 (2015)

    Article  ADS  Google Scholar 

  17. A. Tankut, M. Karaman, E. Ozkol, S. Canli, R. Turan, Structural properties of a-Si films and their effect on aluminum induced crystallization. AIP Adv. 5, 107114 (2015)

    Article  ADS  Google Scholar 

  18. C.-F. Han, G.-S. Hu, T.-C. Li, J.F. Lina, Effects of thicknesses of Si/Al/Si composite films and annealing temperature on metal-induced si crystallization efficiency, voids, and electrical properties. Thin Solid Films 599, 151–160 (2016)

    Article  ADS  Google Scholar 

  19. A. Bendavid, P.J. Martin, C. Comte, L.K. Randeniya, D. Weller, Synthesis of Al–Si nano-template substrates for surface-enhanced Raman scattering application. Thin Solid Films 585, 45–49 (2015)

    Article  ADS  Google Scholar 

  20. B.C. Tappan, S.A. Steiner III, E.P. Luther, Nanoporous metal foams. Angew. Chem. Int. Ed. 49, 4544–4565 (2010)

    Article  Google Scholar 

  21. S. Sen, D. Liu, G. Tayhas, R. Palmore, Electrochemical reduction of CO2 at copper nanofoams. ACS Catal. 4, 3091–3095 (2014)

    Article  Google Scholar 

  22. J.M. Liu, Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt. Lett. 7(5), 196–198 (1982)

    Article  ADS  Google Scholar 

  23. M.A. Green, Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients. Sol. Energy Mater. Sol. Cells 92, 1305–1310 (2008)

    Article  Google Scholar 

  24. J. Bonse, K.-W. Brzezinka, A.J. Meixner, Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy. Appl. Surf. Sci. 221, 215–230 (2004)

    Article  ADS  Google Scholar 

  25. K. Sokolowski-Tinten, J. Bialkowski, D. von der Linde, Ultrafast laser-induced order-disorder transitions in semiconductors. Phys. Rev. B 51(20), 14186 (1995)

    Article  ADS  Google Scholar 

  26. J.P. McDonald, V.R. Mistry, K.E. Ray, S.M. Yalisove, Femtosecond-laser-induced delamination and blister formation in thermal oxide films on silicon (100). Appl. Phys. Lett. 88, 153121 (2006). https://doi.org/10.1063/1.2193777

    Article  ADS  Google Scholar 

  27. S.I. Anisimov, B.S. Luk’yanchuk, Selected problems of laser ablation theory. Phys. Usp. 45, 293–324 (2002)

    Article  Google Scholar 

  28. D.P. Korfiatis, K.-A.Th Thoma, J.C. Vardaxoglou, Numerical modeling of ultrashort-pulse laser ablation of silicon. Appl. Surf. Sci. 255, 7605–7609 (2009)

    Article  ADS  Google Scholar 

  29. D.S. Ivanov, B. Rethfeld, The effect of pulse duration on the interplay of electron heat conduction and electron–phonon interaction: photo-mechanical versus photo-thermal damage of metal targets. Appl. Surf. Sci. 255, 9724–9728 (2009)

    Article  ADS  Google Scholar 

  30. M.B. Agranat, S.I. Anisimov, S.I. Ashitkov, A.V. Ovchinnikov, P.S. Kondratenko, D.S. Sitnikov, V.E. Fortov, On the mechanism of the absorption of femtosecond laser pulses in the melting and ablation of Si and GaAs. JETP Lett. 83(11), 501–504 (2006)

    Article  Google Scholar 

  31. A.A. Ionin, S.I. Kudryashov, A.A. Samokhin, Material surface ablation produced by ultrashort laser pulses. Phys. Usp. 60, 149–160 (2017)

    Article  ADS  Google Scholar 

  32. S.I. Anisimov, N.A. Inogamov, Yu..V. Petrov, V.A. Khokhlov, V.V. Zhakhovskii, K. Nishihara, M.B. Agranat, S.I. Ashitkov, P.S. Komarov, Interaction of short laser pulses with metals at moderate intensities. App. Phys. A 92, 939–943 (2008)

    Article  ADS  Google Scholar 

  33. B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, S.I. Anisimov, Ultrafast thermal melting of laser-excited solids by homogeneous nucleation. Phys. Rev. B 65, 092103 (2002)

    Article  ADS  Google Scholar 

  34. S.I. Ashitkov, N.A. Inogamov, V.V. Zhakhovskii, Yu..N. Emirov, M.B. Agranat, I.I. Oleinik, S.I. Anisimov, V.E. Fortov, Formation of nanocavities in the surface layer of an aluminum target irradiated by a femtosecond laser pulse. JETP Lett. 95(4), 176–181 (2012)

    Article  ADS  Google Scholar 

  35. S.I. Anisimov, N.A. Inogamov, Y.V. Petrov, V.A. Khokhlov, V.V. Zhakhovskii, K. Nishihara, M.B. Agranat, S.I. Ashitkov, P.S. Komarov, Thresholds for front-side ablation and rear-side spallation of metal foil irradiated by femtosecond laser pulse. Appl. Phys. A 92, 797–801 (2008)

    Article  ADS  Google Scholar 

  36. S.I. Ashitkov, P.S. Komarov, A.V. Ovchinnikov, E.V. Struleva, V.V. Zhakhovskii, N.A. Inogamov, M.B. Agranat, Ablation and nanostructuring of metals by femtosecond laser pulses. Quantum Electron. 44(6), 535–539 (2014)

    Article  ADS  Google Scholar 

  37. M.B. Agranat, S.I. Anisimov, S.I. Ashitkov, V.V. Zhakhovskii, N.A. Inogamov, P.S. Komarov, A.V. Ovchinnikov, V.E. Fortov, V.A. Khokhlov, V.V. Shepelev, Strength properties of an aluminum melt at extremely high tension rates under the action of femtosecond laser pulses. JETP Lett. 91(9), 471–477 (2010)

    Article  ADS  Google Scholar 

  38. A.E. Mayer, P.N. Mayer, Continuum model of tensile fracture of metal melts and its application to a problem of high-current electron irradiation of metals. J. Appl. Phys. 118, 035903 (2015)

    Article  ADS  Google Scholar 

  39. C.Y. Ho, R.W. Powell, P.E. Liley, Thermal conductivity of the elements. J. Phys. Chem. Ref. Data 1(2), 279–421 (1972)

    Article  ADS  Google Scholar 

  40. Yu..A. Volkov, L.S. Palatnik, A.T. Pugachev, Investigation of the thermal properties of thin aluminum films. Zh. Eksp. Teor. Fiz. 70, 2244–2250 (1976)

    ADS  Google Scholar 

  41. F. Volklein, H. Balles, A microstructure for measurement of thermal conductivity of polysilicon thin films. J. Microelectromech. Syst. 1(4), 193–196 (1992)

    Article  Google Scholar 

  42. S. Uma, A.D. McConnell, M. Asheghi, K. Kurabayashi, K.E. Goodson, Temperature-dependent thermal conductivity of undoped polycrystalline silicon layers. Int. J. Thermophys. 22, 605–616 (2001)

    Article  Google Scholar 

  43. P.E. Hopkins, Thermal transport across solid interfaces with nanoscale imperfections: effects of roughness, disorder, dislocations, and bonding on thermal boundary conductance. ISRN Mech. Eng. 682586 (2013). https://doi.org/10.1155/2013/682586

  44. N. Yang, T. Luo, K. Esfarjani, A. Henry, Z. Tian, J. Shiomi, Y. Chalopin, B. Li, G. Chen, Thermal interface conductance between aluminum and silicon by molecular dynamics simulations. J. Comput. Theor. Nanosci. 12(2), 168–174 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The work has been carried out at the “Femtosecond Laser Centre” of Joint Institute for High Temperatures of the Russian Academy of Sciences (JIHT RAS). We are indebted to A.V. Ovchinnikov and D.S. Sitnikov for help with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Romashevskiy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romashevskiy, S.A., Tsygankov, P.A., Ashitkov, S.I. et al. Layer-by-layer modification of thin-film metal–semiconductor multilayers with ultrashort laser pulses. Appl. Phys. A 124, 376 (2018). https://doi.org/10.1007/s00339-018-1812-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1812-1

Navigation