Skip to main content
Log in

Room-temperature ferromagnetic Zn1−xNi x S nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nickel-doped zinc sulfide nanoparticles (Zn1−xNi x S) at x = 0.00, 0.02, 0.05, 0.08 and 0.10 were synthesized by solid-state reaction. The (nickel sulfide) NiS and (zinc sulfide) ZnS nanoparticles in desired ratios were taken, mixed and ground for 6 h at a speed rate of 300 rpm using a planetary ball mill. The milled nanoparticles were sintered at 600 °C for 8 h using a high-temperature vacuum furnace. The structural, optical, luminescence and magnetic properties of the Zn1−xNi x S nanoparticles were characterized by powder X-ray diffraction (XRD), UV–Vis–NIR diffuse reflectance spectroscopy, photoluminescence (PL) spectroscopy and vibrating sample magnetometer (VSM). No change in crystal structure was observed from XRD by substitution of Ni into ZnS lattice. The mean crystallite size was found to be 37 nm. The band gap of Zn1−xNi x S nanoparticles decreased from 3.57 to 3.37 eV on increasing the dopant concentration. The room-temperature photoluminescence (PL) spectra of Zn1−xNi x S nanoparticles showed two broad and intense emission peaks at 420 and 438 nm with excitation wavelength of 330 nm. The Zn1−xNi x S nanoparticles showed ferromagnetism at 100 K and at room temperature (300 K) and also the strength of magnetization increased with Ni concentration. The maximum magnetization value of 0.18 emu/g was observed for x = 0.10 at 100 K. The strength of the magnetization observed at 100 K was higher than that of magnetization observed at 300 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Datta, S.K. Panda, S. Chaudhuri, J. Solid State Chem. 181, 2332–2337 (2008)

    Article  ADS  Google Scholar 

  2. A. Franco Jr., H.V.S. Pessoni, P.R.T. Ribeiro, F.L.A. Machado, J. Magn. Magn. Mater. 426, 347–350 (2017)

    Article  ADS  Google Scholar 

  3. Y. Li, C. Cao, Z. Chen, Chem. Phys. Lett. 517, 55–58 (2011)

    Article  ADS  Google Scholar 

  4. W.-S. Ni, Y.-J. Lin, J. Alloy. Compd. 649, 968–972 (2015)

    Article  Google Scholar 

  5. H. Van Bui, H.N. Nguyen, N.N. Hoang, T.T. Truong, V.B. Pham. IEEE Trans. Magn. 50, 1–4 (2014)

    Google Scholar 

  6. S. Kumar, N.K. Verma, J. Mater. Sci. Mater. Electron. 25, 785–790 (2014)

    Article  Google Scholar 

  7. H. Soni, M. Chawda, D. Bodas. Mater. Lett. 63, 767–769 (2009)

    Article  Google Scholar 

  8. C.S. Pathak, P.K. Pathak, P. Kumar, M.K. Mandal, J. Ovonic Res. 8, 15–20 (2012)

    Google Scholar 

  9. A.K. Das, A.K. Buzarbaruah, S. Bardaloi, Int. J. Sci. Res. Publ. 618 (2013)

  10. R. Choudhury, S. Bordaloi, Int. J. Appl. Sci. Eng. Res. 3, 712–722 (2014)

    Google Scholar 

  11. Z. Dehghani, S. Nazerdeylami, E. Saievar-Iranizad, M.H. Majles, Ara, J. Phys. Chem. Solids 72, 1008–1010 (2011)

    Article  ADS  Google Scholar 

  12. R.S. Kumar, V. Veeravazhuthi, N. Muthukumarasamy, M. Thambidurai, D.V. Shankar, Superlattices Microstruct. 86, 552–558 (2015)

    Article  ADS  Google Scholar 

  13. B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, 1972)

  14. R. Kuzel, V. Valvoda, M. Chladek, J. Musil, J. Matous, Thin Solid Films 263, 150–158 (1995)

    Article  ADS  Google Scholar 

  15. S. Muruganandam, G. Anbalagan, G. Murugadoss, Optik Int. J. Light Electron Opt. 130, 82–90 (2017)

    Article  Google Scholar 

  16. S.Z.H. Shah, S. Riaz, Z.N. Kayani, S. Naseem, The 2016 World Congress on Advances in Civil, Environmental and Materials Research (ACEM’16), (ICC Jeju, Jeju Island, Korea, 2016)

  17. N. Nripasree, N.K. Deepak, Mater. Sci. Eng. B 211, 121–127 (2016)

    Article  Google Scholar 

  18. J.J. Tauc, Amorphous and Liquid Semiconductors (Plenum, London, 1974)

    Book  Google Scholar 

  19. R. Sahraei, S. Darafarin, J. Lumin. 149, 170–175 (2014)

    Article  Google Scholar 

  20. W.Q. Peng, G.W. Cong, S.C. Qu, Z.G. Wang, Opt. Mater. 29, 313–317 (2006)

    Article  ADS  Google Scholar 

  21. S. Sambasivam, B. Sathyaseelan, D. Raja Reddy, B.K. Reddy, C.K. Jayasankar, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 71, 1503–1506 (2008)

    Article  ADS  Google Scholar 

  22. P.K. Ghosh, S. Jana, S. Nandy, K.K. Chattopadhyay, Mater. Res. Bull. 42, 505–514 (2007)

    Article  Google Scholar 

  23. K. Manzoor, V. Aditya, S.R. Vadera, N. Kumar, T.R.N. Kutty, J. Phys. Chem. Solids 66, 1164–1170 (2005)

    Article  ADS  Google Scholar 

  24. S.P. Kaur, C.-L. Kumar, K.-S. Chen, D.-H. Yang, C.-L. Wei, C. Dong, S.M. Rao, Mater. Chem. Phys. 186, 124–130 (2017)

    Article  Google Scholar 

  25. K.C. Kumar, N. Madhusudhana Rao, S. Kaleemulla, G. Venugopal Rao, Phys. B 522, 75–80 (2017)

    Article  ADS  Google Scholar 

  26. C.L. Sanjeev Kumar, C.L. Chen, Y.K. Dong, J.F. Ho, T.S. Lee, R. Chan, T.K. Thangavel, B.H. Chen, S.M. Mok, M.K. Rao, Wu, J. Alloy Compd. 554, 357–362 (2013)

    Article  Google Scholar 

  27. J. Frank, L. Owens, R. Gladczuk, P. Szymczak, A. Dluzewski, H. Wisniewski, A.S. Golnik, C. Bernhard, C. Niedermayer, J. Phys. Chem. Solids 72, 648–652 (2011)

    Article  ADS  Google Scholar 

  28. J. Sandonis, J. Baruchel, B.K. Tanner, G. Fillion, V.V. Kvardakov, K.M. Podurets, J. Magn. Magn. Mater. 104, 350–352 (1992)

    Article  ADS  Google Scholar 

  29. D.P. Norton, S.J. Pearton, A.F. Hebard, N. Theodoropoulou, L.A. Boatner, R.G. Wilson, Appl. Phys. Lett. 82, 239–241 (2003)

    Article  ADS  Google Scholar 

  30. O.D. Jayakumar, I.K. Gopalakrishnan, R.M. Kadam, A. Vinu, A. Asthana, A.K. Tyagi, J. Cryst. Growth 300, 358–363 (2007)

    Article  ADS  Google Scholar 

  31. D. Singh, A. Mahajan, Ceram. Int. 41, 11748–11755 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to VIT-SIF for providing XRD, PL and DRS facilities to carry out the present work. Further authors are also thankful to Dr. G. Venugopal Rao, IGCAR, Kalpakkam, for providing the vibrating sample magnetometer facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaleemulla Shaik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunapalli, C.K., Shaik, K. Room-temperature ferromagnetic Zn1−xNi x S nanoparticles. Appl. Phys. A 124, 384 (2018). https://doi.org/10.1007/s00339-018-1811-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1811-2

Navigation