Skip to main content

Advertisement

Log in

Electromagnetic interference shielding and microwave absorption properties of cobalt ferrite CoFe2O4/polyaniline composite

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Improvement of microwave-absorbing materials (MAMs) is the most important research area in various applications, such as in communication, radiation medical exposure, electronic warfare, air defense, and different civilian applications. Conducting polymer, polyaniline doped with para toluene sulphonic acid (PANI-PTSA) as well as cobalt ferrite (CoFe2O4) is synthesized by sol–gel method and intensely blends in different ratios. The characterization of the composite materials, CoFe2O4/PANI-PTSA (CFP1, CFP2, CFP3 and CFP4), was performed by X-ray diffraction (XRD), atomic force microscopy (AFM) and vibrating sample magnetometry (VSM). The microwave-absorbing properties’ reflection loss (dB) and important parameters, such as complex relative permittivity (ε r ′– r ″) and complex relative permeability (µ r ′– r ″) were measured in different microwave frequencies in the X-band (8.2–12.4 GHz) region. The composite material CFP3 showed a wider absorption frequency range and maximum reflection loss of − 28.4 dB (99.8% power absorption) at 8.1 GHz and − 9.6 dB (> 90% power absorption) at 11.2 GHz, and so the composite can be used as a microwave absorber; however, it can be more suitable for application in daily life for making cell phones above 9 GHz. Also the results showed that the thicker composites like CFP3 (4 mm) exhibit obviously better EMI SE as compared with the thinner ones (0.19, 0.19, 0.3 mm); this may be related to the low transmission of the EM wave from the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Y.L. Cheng, J.M. Dai, X.B. Zhu, D.J. Wu, Y.P. Sun, Preparation, magnetic and microwave absorption properties of La0.55Sr0.5MnO3/La(OH)3 com. Mater Res Bull 45, 663–667 (2010)

    Article  Google Scholar 

  2. D. Micheli, R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, V.M. Primiani et al., Broadband electromagnetic absorbers using carbon nanostructurebased composites. IEEE Trans Micr Theory Tech 59, 2633 – 46 (2011)

    Article  ADS  Google Scholar 

  3. S.P. Gairola, V. Verma, L. Kumar, M.A. Dar, S. Annapoorni, R.K. Kotnala, Enhanced microwave absorption properties in polyaniline and nano-ferrite composites in X-band. Synth. Met. 160, 2315–2318 (2010)

    Article  Google Scholar 

  4. M.M. Ismail, N. A. Jaber, Structural analysis and magnetic properties of lithium-doped Ni–Zn ferrite nanoparticle. J. Supercond. Nov. Magn. (2017). https://doi.org/10.1007/s10948-017-4428-3

    Google Scholar 

  5. Y. Li, W.Q. Cao, J. Yuan, D.W. Wang, M.S. Cao, Nd doping of bismuth ferrite to tune electromagnetic properties and increase microwave absorption by magnetic–dielectric synergy. J. Mater. Chem. C 3, 9276–9282 (2015)

    Article  Google Scholar 

  6. M. Fan, Z.F. He, H. Pang, Microwave absorption enhancement of CIP/PANI composites. Synth. Met. 166, 1–6 (2013)

    Article  Google Scholar 

  7. K. Lakshmi, H. John, K.T. Mathew, R. Joseph, K.E. George, Microwave absorption, reaction and EMI shielding of PU-PANI composites. Acta Mater. 57, 371–375 (2009)

    Article  Google Scholar 

  8. J.H. Tang, L. Ma, N. Tian, M.Y. Gan, F.F. Xu, J. Zeng et al., Synthesis and electromagnetic properties of PANI/PVP/CIP core–shell composites. Mater Sci Eng B 186, 26–32 (2014)

    Article  Google Scholar 

  9. C.L. Yuan, Y.S. Hong, C.H. Lin, Synthesis and characterization of Sr(ZnZr) x Fe12-2xO19-PANI composites. J Magn Magn Mater 323, 1851–1854 (2011)

    Article  ADS  Google Scholar 

  10. M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48, 788–796 (2010)

    Article  Google Scholar 

  11. C.L. Zhu, M.L. Zang, Y.J. Qiao, G. Xiao, F. Zhang, Y.J. Chen, Fe3O4/TiO2 core/shell nanotubes: synthesis and magnetic and electromagnetic wave absorption characteristics. J. Phys. Chem. C 114, 16229–16235 (2010)

    Article  Google Scholar 

  12. L. Li, H. Liu, Y. Wang, J. Jiang, F. Xu, Preparation and magnetic properties of Zn–Cu–Cr–La ferrite and its nanocomposites with polyaniline. J. Colloid Interface Sci. 321, 265–271 (2008)

    Article  ADS  Google Scholar 

  13. E.C. Gomes, M.A.S. Oliveira, Chemical polymerization of aniline in hydrochloric acid (HCl) and formic acid (HCOOH) media. Differences between the two synthesized polyanilines. Am. J. Polymer. Sci. 2(2), 5–13 (2012)

    Article  Google Scholar 

  14. H.D. Tran, J.M. D’Arcy, Y. Wang, P.J. Beltramo, V.A. Strong, R.B. Kaner, The oxidation of aniline to produce “polyaniline”: a process yielding many different nanoscale structures. J. Mater. Chem. 21, 3534–3550 (2011)

    Article  Google Scholar 

  15. S.K. Shukla, A. Bharadvaja, A. Tiwari, G.K. Parashar, G.C. Dubey, Synthesis and characterization of highly crystalline polyaniline film promising for humid sensor. Adv. Mat. Lett. 1(2), 129–134 (2010)

    Article  Google Scholar 

  16. C.Y. Xuehong Lua, J.X. Tana, C. Heb, Thermal degradation of electrical conductivity of polyacrylic acid doped polyaniline: effect of molecular weight of the dopants. Synth. Met. 138, 429–440 (2003)

    Article  Google Scholar 

  17. J. Zang, Y. Wang, X. Zhao, G. Xin, S. Sun, X. Qu, S. Ren, Electrochemical synthesis of polyaniline on nanodiamond powder. Int. J. Electrochem. Sci. 7, 1677–1687 (2012)

    Google Scholar 

  18. A.M. Pharhad Hussain, A. Kumar, Electrochemical synthesis and characterization of chloride doped polyaniline. Bull. Mater. Sci. 26(3), 329–334 (2003)

    Article  Google Scholar 

  19. V. Luthra, R. Singh, S.K. Gupta, A. Mansingh, Mechanism of dc conduction in polyaniline doped with sulfuric acid. Curr. Appl. Phys. 3, 219–222 (2003)

    Article  Google Scholar 

  20. M. Campos, B. Bello, Jr, Mechanism of conduction in doped polyaniline. J. Phys. D: Appl. Phys. 30, 1531–1535 (1997)

    Article  ADS  Google Scholar 

  21. J. Stejskal, I. Sapurina, J. Prokes, J. Zemek, In situ polymerized polyaniline films. Synth. Met. 105, 195–202 (1999)

    Article  Google Scholar 

  22. J. Kim, S. Kwon, D.W. Ihm, Synthesis and characterization of organic soluble polyaniline prepared by one-step emulsion polymerization. Curr. Appl. Phys. 7, 205–210 (2007)

    Article  ADS  Google Scholar 

  23. R. Patil, A.S. Roy, K.R. Anilkumar, K.M. Jadhav, S. Ekhelikar, Dielectric relaxation and ac conductivity of polyaniline–zinc ferrite composite. Compos. B 43, 3406–3411 (2012)

    Article  Google Scholar 

  24. M.M. Ismail, N.A. Jaber, Influences of cation distribution of zinc substituted on inverse spinal nickel ferrite nanoparticle for superparamagnetic approach. Surf. Rev. Lett. 25(3), 1850076 (2018)

    Article  Google Scholar 

  25. P. Xiong, Q. Chen, M. He, X. Sun, X. Wang, Cobalt ferrite–polyaniline heteroarchitecture: a magnetically recyclable photocatalyst with highly enhanced performances. J. Mater. Chem. 22, 17485–17493 (2012)

    Article  Google Scholar 

  26. E.E. Tanriverdi, A.T. Uzumcu, H. Kavas, A. Demir, A. Baykal, Conductivity study of polyaniline-cobalt ferrite (PANI-CoFe2O4) nanocomposite. Nano-Micro Lett. 3(2), 99–107 (2011)

    Article  Google Scholar 

  27. N.E. Kazantseva, Y.I. Bespyatykha, I. Sapurinab, J. Stejskalc, J. Vilcakova, P. Sahad, Magnetic materials based on manganese–zinc ferrite with surface-organized polyaniline coating. J. Magn. Magn. Mater. 301, 155–165 (2006)

    Article  ADS  Google Scholar 

  28. O. Yavuz, M.K. Ram, M. Aldissi, P. Poddar, S. Hariharan, Synthesis and the physical properties of MnZn ferrite and NiMnZn ferrite–polyaniline nanocomposite particles. J. Mater. Chem. 15, 810–817 (2005)

    Article  Google Scholar 

  29. J. Jiang, L. Ai, L.C. Li, Synthesis and magnetic performance of polyaniline/Mn–Zn ferrite nanocomposites with intrinsic conductivity. J. Mater. Sci. 44, 1024–1028 (2009)

    Article  ADS  Google Scholar 

  30. J.C. Chiang, A.G. Mac Diarmid, ‘Polyaniline’: protonic acid doping of the emeraldine form to the metallic regime. Synth. Met. 13, 193–205 (1986)

    Article  Google Scholar 

  31. R.W. Gumbs, Synthesis of electrically conductive vinyl copolymers. Synth. Metals 64(1), 27–31 (1994)

  32. J.A. Konklin, T.M. Su, S.C. Huang, R.B. Kanker, in Handbook of conducting polymers, ed. by T.A. Skotheim, R.L. Elsenbaumer, J.R. Reynolds eds. (Marcel Dekker, New York, 1998), p. 945

    Google Scholar 

  33. F. Mohammad, in Handbook of advanced electronic and photonic materials and devices, ed. by H.S. Nalwa (Academic, New York, 2000), vol. 8, p. 321

    Google Scholar 

  34. N.J. Pinto, P.L. Carrion, A.M. Ayala, M. Ortiz-Macriales, Synth. Metals, 148, 271 (2005)

  35. S.N. Rafeeq, M.M. Mukhils, M.A. Sulaiman, Magnetic and dielectric properties of CoFe2O4 and Co x Zn1–xFe2O4 nanoparticles synthesized using sol–gel method. J Magn 22(3), 406–413 (2017)

    Article  Google Scholar 

  36. M. Nagaraja, J. Pattar, N. Shashanka, J. Manjannac, Y. Kamadac, K. Rajannab, H.M. Mahesh, Electrical, structural and magnetic properties of polyaniline/pTSA-TiO2 nanocomposites. Synth. Met. 159, 718–722 (2009)

    Article  Google Scholar 

  37. G. Dixit, J.P. Singh, R.C. Srivastava, A. Gupta, Structural and magnetic behaviour of NiFe2O4 thin film grown by pulsed laser deposition. Indian J. Pure Appl. Phys. 48, 287–291 (April 2010)

    Google Scholar 

  38. R. Ratheesh, K. Viswanathan, Electrical conductivity studies on para toluene sulphonic acid doped polyaniline. Physics. 3(11), ISSN-2249-555X (2013).

  39. P. Saini, M. Arora, Microwave absorption and EMI shielding behavior of nanocomposites based on intrinsically conducting polymers, graphene and carbon nanotubes (National Physical Laboratory, New Delhi, 2012)

    Book  Google Scholar 

  40. V.J. Babu, S. Vempati, S. Ramakrishna, Conducting polyaniline-electrical charge transportation. Mater. Sci. Appl. 4, 1–10 (2013)

    Google Scholar 

  41. H.-S. Xu, Z.-Y. Cheng, Q.M. Zhang, P.-C. Wang, A.G. Macdiarmid, Conduction behavior of doped poly-aniline films at high current density regime. J. Polym. Sci. Part B 37(20), 2845–2850 (1999)

    Article  Google Scholar 

  42. R. Ratheesh, K. Viswanathan, Chemical polymerization of aniline using paratoluene sulphonic acid. J. Appl. Phys. (2014)

  43. Jump up ^ Davis, E. A.; Mott, N. F. Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. A. 22(179), 903–922 (1970)

    Article  ADS  Google Scholar 

  44. A.S. Sarac, M. Ates, B. Kilic, Electrochemical impedance spectroscopic study of polyaniline on platinum, glassy carbon and carbon fiber microelectrodes. Int. J. Electrochem. Sci. 3, 777–786 (2008)

    Google Scholar 

  45. J. Alam, U. Riaz, S. Ahmad, Effect of ferro-fluid concentration on electrical and magnetic properties of the Fe3O4/PANI nanocomposites. J. Magn. Magn. Mater. 314(2), 93–99 (2007)

    Article  ADS  Google Scholar 

  46. F. Sauzedde, A. Esmissari, C. Pichot, Hydrophilic magnetic polymer latexes. 1. Adsorption of magnetic iron oxide nanoparticles onto various cationic latexes. Colloid. Polym. Sci. 277, 846 (1999)

    Article  Google Scholar 

  47. L. Li, H. Qiu, H. Qian, B. Hao, X. Liang, Controlled synthesis of the poly(N-methylaniline)/Zn0.6Mn0.2Ni0.2Fe2O4 composites and its electrical-magnetic property. J. Phys. Chem. C 114, 6712 (2010)

    Article  Google Scholar 

  48. J. Jiang, L. Li, F. Xua, Polyaniline-LiNi ferrite core-shell composite: preparation, characterization and properties. Mater. Sci. Eng. A 456, 300–304 (2007)

    Article  Google Scholar 

  49. A.M. Nicolson, G.F. Ross, Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans. Instrum Measur 19, 377–382 (1970)

    Article  Google Scholar 

  50. W.B. Weir, Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc. IEEE 62, 33–36 (1974)

    Article  Google Scholar 

  51. H.J. Kwon, Y. Shin, J.H. Oh, The microwave absorbing and resonance phenomena of Y-type hexagonal ferrite microwave absorbers. J. Appl. Phys. 75(10), (1994)

  52. M. Gholampoor, F. Movassagh-Alangh, H. Salimkhani, Fabrication of nano-Fe3O4 3D structure on carbon fibers as a microwave absorber and EMI shielding composite by modified EPD method. Solid State Sci. (2017). https://doi.org/10.1016/j.solidstatesciences.2016.12.005

    Google Scholar 

  53. S.K. Dhawan, A. Ohlan, K. Singh,” Designing of nano composites of conducting polymers for EMI shielding. National Physical Laboratory (CSIR), New Delhi, 110 012, India (2011)

  54. C.K. Das, A. Mandal, Microwave absorbing properties of DBSA-doped Polyaniline/BaTiO3-Ni0.5Zn0.5Fe2O4 nanocomposites. J. Mater. Sci. Res. 1, 1 (2012)

    Google Scholar 

  55. K. Ishino, Y. Narumiya, Development of magnetic ferrites: control and application of losses. Ceram. Bull. 66, 1469–1474 (1987)

    Google Scholar 

  56. D.A. Dimitrov, G.M. Wysin, Magnetic properties of spherical fcc clusters with radial surface anisotropy. Phys. Rev. B 51, 11947–11950 (1995)

    Article  ADS  Google Scholar 

  57. V.P. Shilov, J.C. Bacri, F. Gazeau, F. Gendron, R. Perzynski, Y.L. Raikher, Ferromagnetic resonance in ferrite nanoparticles with uniaxial surface anisotropy. J. Appl. Phys. 85, 6642.1–6642.6 (1999)

    Article  Google Scholar 

  58. F. Movassagh-Alanagh, A. Bordbar-Khiabani, A. Ahangari-Asl, Three-phase PANI@nano-Fe3O4@CFs heterostructure: fabrication, characterization and investigation of microwave absorption and EMI shielding of PANI@nano-Fe3O4@CFs/epoxy hybrid composite. Compos. Sci. Technol. (2017). https://doi.org/10.1016/j.compscitech.2017.07.010

    Google Scholar 

  59. N.F. Colaneri, L.W. Shacklette, IEEE T. Instrum. Meas. 41 (1992)

  60. J.C. Wang, C.S. Xiang, Q. Liu, Y.B. Pan, J.K. Guo, Adv. Funct. Mater. 18(19), 2995–3002 (2008)

    Article  Google Scholar 

  61. P.B. Jana, A.K. Mallick, S.K. De, IEEE T. Electromagn. C 34(4), 478–481 (1992)

    Article  Google Scholar 

  62. Y.K. Hong, C.Y. Lee, C.K. Jeong, D.E. Lee, K. Kim, J. Joo, Rev. Sci. Instrum. 74(2), 1098–1102 (2003)

    Article  ADS  Google Scholar 

  63. M. Bayat, H. Yang, F.K. Ko, D. Michelson, A. Mei, Electromagnetic interference shielding effectiveness of hybrid multifunctional Fe3O4/carbon nanofiber composite. Polymer 55, 936–943 (2014)

    Article  Google Scholar 

  64. M.H. Al-Saleh, W.H. Saadeh, U. Sundararaj, EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon 60, 146–156 (2013)

    Article  Google Scholar 

  65. A. Ohlan, K. Singh, A. Chandra, S.K. Dhawan, Microwave absorption behavior of core–shell structured poly (3, 4-ethylenedioxy thiophene)-barium ferrite nanocomposites. ACS Appl. Mater. Interf. 2, 927–933 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukhils M. Ismail.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, M.M., Rafeeq, S.N., Sulaiman, J.M.A. et al. Electromagnetic interference shielding and microwave absorption properties of cobalt ferrite CoFe2O4/polyaniline composite. Appl. Phys. A 124, 380 (2018). https://doi.org/10.1007/s00339-018-1808-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1808-x

Navigation