Skip to main content
Log in

The disclosed transformation of pre-sputtered Ti films into nanoparticles via controlled thermal oxidation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanoparticles of TiO2 were successfully prepared from pre-sputtered Ti films using the controlled thermal oxidation. The effect of oxidation temperature on structural, morphological and optical properties in addition to photocatalysis activity of the sputtered films was tested and explained. Analysis of XRD and EDAX elucidated the enhancement in crystallization and oxygen content with the increase of oxidation temperature. SEM depicted the formation of very fine nanoparticles with no specific border on the films oxidized at 550 and 600 °C, whilst crystallites with larger size of approximately from 16 to 23 nm have been observed for the film oxidized at 650 °C. Both optical transmission and refractive index were increased with increasing the oxidation temperature. A red shift in the absorption edge was obtained for the films oxidized at 650 °C compared to that oxidized at 600 °C. The photocatalysis tests demonstrated the priority of 600 °C nanoparticle films to decompose methyl orange (MO) more than 650 °C treated film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.H. Jilavi, S.H. Mousavi, T.S. Müller, P.W. de Oliveira, Appl. Surf. Sci. 439, 323 (2018)

    Article  ADS  Google Scholar 

  2. C. Bogatu, D. Perniu, C. Sau, O. Iorga, M. Cosnita, A. Duta, Ceram. Int. 43, 7963 (2017)

    Article  Google Scholar 

  3. R. Singh, M. Kumar, M. Saini, A. Singh, B. Satpati, T. Som, Appl. Surf. Sci. 418, 225 (2017)

    Article  ADS  Google Scholar 

  4. A.C.R. Faria, M.C. Vebber, N. Dal’Acqua, M. Giovanela, C. Aguzzoli, M.B. Pereira, G. Machado, J.S. Crespo, Int. J. Hydrogen Energy 42, 16568 (2017)

    Article  Google Scholar 

  5. S. Hong-Tao, W. Xiao-Ping, K. Zhi-Qi, W. Li-Jun, W. Jin-Ye, S. Yi-Qing, Chin. Phys. B 24, 047701 (2015)

    Article  ADS  Google Scholar 

  6. S. Huang, T.-D. Kim, J. Luo, S.K. Hau, Z. Shi et al., Appl. Phys. Lett. 96, 243311 (2010)

    Article  ADS  Google Scholar 

  7. C. Wang, L. Yin, L. Zhang, Y. Qi, N. Lun, N. Liu, Langmuir 26, 12841 (2010)

    Article  Google Scholar 

  8. W. Yang, C.A. Wolden, Thin Solid Films 515, 1708 (2006)

    Article  ADS  Google Scholar 

  9. Y.M. Sung, H.J. Kim, Thin Solid Films 515, 4996 (2007)

    Article  ADS  Google Scholar 

  10. M. Manickam, P. Singh, T.B. Issa, S. Thurgate, J. Appl. Electrochem. 36, 599 (2006)

    Article  Google Scholar 

  11. C.G. Silva, J.L. Faria, Photochem. Photobiol. Sci. 8, 705 (2009)

    Article  Google Scholar 

  12. M.L. Lavcevic, A. Turkovic, Thin Solid Films 419, 105 (2002)

    Article  ADS  Google Scholar 

  13. M.H. Habibi, N. Talebian, J.H. Choi, Dyes Pigm. 73, 103 (2007)

    Article  Google Scholar 

  14. C.J. Tavares, J. Vieira, L. Rebouta, G. Hungerford, P. Coutinho, V. Teixeira, J.O. Carneiro, A.J. Fernandes, Mater. Sci. Eng. B 138, 139 (2007)

    Article  Google Scholar 

  15. S.B. Amor, G. Baud, M. Jacquet, N. Pichon, Surf. Coat. Technol. 102, 63 (1998)

    Article  Google Scholar 

  16. Z. Wang, U. Helmersson, P.O. Kall, Thin Solid Films 405, 50 (2002)

    Article  ADS  Google Scholar 

  17. J.A. Stride, N.T. Tuong, Solid State Phenom. 162, 261 (2010)

    Article  Google Scholar 

  18. A.O. Ibhadon, P. Fitzpatrick, Catalysts 3, 189 (2013)

    Article  Google Scholar 

  19. T.K. Das, P. Ilaiyaraja, P.S.V. Mocherla, G.M. Bhalerao, C. Sudakar, Solar Energ. Mat. Sol. C 144, 194 (2016)

    Article  Google Scholar 

  20. K.M. Reddy, S.V. Manorama., A.R. Reddy, J. Solid State Chem. 158, 180 (2001)

    Article  ADS  Google Scholar 

  21. B. Zhou, X. Jiang, Z. liu, R. Shen, A. V.Rogachev, Mater. Sci. Semicond. Proc. 16, (2013) 513

  22. A. Burton, Environ. Health Perspect. 120, A 229 (2012)

    Article  Google Scholar 

  23. S.M. Lomnicki, H. Wu, S.N. Osborne, J.M. Pruett, R.L. McCarley, E. Poliakoff, B. Dellinger, Mater. Sci. Eng. B 175, 136 (2010)

    Article  Google Scholar 

  24. M.A. Awad, N.M.A. Hadia, Optik 142, 334 (2017)

    Article  ADS  Google Scholar 

  25. M.M. Hasan, A.S.M.A. Haseeb, R. Saidur, H.H. Masjuki, M. Hamdi, Opt. Mater. 32, 690 (2010)

    Article  ADS  Google Scholar 

  26. M.H. Suhail, G.M. Rao, S. Mohan, J. Appl. Phys. 71, 1421 (1992)

    Article  ADS  Google Scholar 

  27. C.-C. Ting, S.-Y. Chen, D.-M. Liu, J. Appl. Phys. 88, 4628 (2000)

    Article  ADS  Google Scholar 

  28. R.D. Shannon, J.A. Pask, J. Am. Ceram. Soc. 48, 391 (1965)

    Article  Google Scholar 

  29. I. Manouchehri, K. Gholami, B. Astinchap, R. Mordian, D. Mehrparvar, Optik 127, 5383 (2016)

    Article  ADS  Google Scholar 

  30. S.D. Sartale, A.A. Ansari, S.-J. Rezvani, Mater. Sci. Semicond. Proc. 16, (2013) 2005

  31. S.C. Jung, B.H. Kim, S.J. Kim, N. Imaishi, Y.I. Cho, Chem. Vap. Deposition 11, 137 (2005)

    Article  Google Scholar 

  32. F. Lopez-Huerta, B. Cervantes, O. Gonzalez, J. Hernandez-Torres, L. Garcia-Gonzalez, R. Vega, A.L. Herrera-May, E. Soto, Materials 7, 4105 (2014)

    Article  ADS  Google Scholar 

  33. W.D. Callister Jr., D.G. Rethwisch, Materials science and engineering an introduction, Eighth edition (Wiley, Inc., 2010) Ch. 5.

    Google Scholar 

  34. W. He, H. Ya-fang, C. Xi-Chen. Chin. J. Aeronaut. 16, 42 (2003)

    Article  Google Scholar 

  35. A. Morteza Ali, S. Ramezani Sani, Thin Solid Films 534, 183 (2013)

    Article  ADS  Google Scholar 

  36. K.K. Saini, S.D. Sharma, M. Chanderkant, D. Kar, C.P. Singh, Sharma, J. Non-Cryst. Solids 353, 2469 (2007)

    Article  ADS  Google Scholar 

  37. J. Tauc, Amorphous and Liquid Semiconductors (Plenum, London, 1974)

    Book  Google Scholar 

  38. T. Fujii, N. Sakata, J. Takada, Y. Miura, Y. Daitoh, M. Takano, J.Mater. Res. 9, 1468 (1994)

    Article  ADS  Google Scholar 

  39. J. Carlos Colmenares, R. Luque, J.M. Campelo, F. Colmenares, Z. Karpiński, A.A. Romero, Materials 2, 2228 (2009)

    Article  ADS  Google Scholar 

  40. S.H. Mohamed, H.M. Ali, H.A. Mohamed, A.M. Salem, Eur. Phys. J. Appl. Phys. 31, 95 (2005)

    Article  ADS  Google Scholar 

  41. R. Swanepoel, J. Phys. E 16, 1214 (1983)

    Article  ADS  Google Scholar 

  42. S.H. Mohamed, E.R. Shaaban, Mater. Chem. Phys. 121, 249 (2010)

    Article  Google Scholar 

  43. Q. Ye, P.Y. Liu, Z.F. Tang, L. Zhai, Vacuum 81, 627 (2007)

    Article  ADS  Google Scholar 

  44. M.A. Awad, E.M.M. Ibrahim, A.M. Ahmed, Eur. Phys. J. Appl. Phys. 72, 30303 (2015)

    Article  ADS  Google Scholar 

  45. X. Zhang, X. Yan, J. Zhao, Z. Qin, Y. Zhang, Mater. Lett. 63, 444 (2009)

    Article  Google Scholar 

  46. A.B. Patil, K.R. Patil, S.K. Pardeshi, J. Hazard. Mater. 183, 315 (2010)

    Article  Google Scholar 

  47. A. Baral, D.P. Das, M. Minakshi, M.K. Ghosh, D.K. Padhi, Chem. Select 1, 4277 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Awad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awad, M.A., Raaif, M. The disclosed transformation of pre-sputtered Ti films into nanoparticles via controlled thermal oxidation. Appl. Phys. A 124, 388 (2018). https://doi.org/10.1007/s00339-018-1807-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1807-y

Navigation