Applied Physics A

, 124:388 | Cite as

The disclosed transformation of pre-sputtered Ti films into nanoparticles via controlled thermal oxidation

  • M. A. Awad
  • M. Raaif


Nanoparticles of TiO2 were successfully prepared from pre-sputtered Ti films using the controlled thermal oxidation. The effect of oxidation temperature on structural, morphological and optical properties in addition to photocatalysis activity of the sputtered films was tested and explained. Analysis of XRD and EDAX elucidated the enhancement in crystallization and oxygen content with the increase of oxidation temperature. SEM depicted the formation of very fine nanoparticles with no specific border on the films oxidized at 550 and 600 °C, whilst crystallites with larger size of approximately from 16 to 23 nm have been observed for the film oxidized at 650 °C. Both optical transmission and refractive index were increased with increasing the oxidation temperature. A red shift in the absorption edge was obtained for the films oxidized at 650 °C compared to that oxidized at 600 °C. The photocatalysis tests demonstrated the priority of 600 °C nanoparticle films to decompose methyl orange (MO) more than 650 °C treated film.


  1. 1.
    M.H. Jilavi, S.H. Mousavi, T.S. Müller, P.W. de Oliveira, Appl. Surf. Sci. 439, 323 (2018)ADSCrossRefGoogle Scholar
  2. 2.
    C. Bogatu, D. Perniu, C. Sau, O. Iorga, M. Cosnita, A. Duta, Ceram. Int. 43, 7963 (2017)CrossRefGoogle Scholar
  3. 3.
    R. Singh, M. Kumar, M. Saini, A. Singh, B. Satpati, T. Som, Appl. Surf. Sci. 418, 225 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    A.C.R. Faria, M.C. Vebber, N. Dal’Acqua, M. Giovanela, C. Aguzzoli, M.B. Pereira, G. Machado, J.S. Crespo, Int. J. Hydrogen Energy 42, 16568 (2017)CrossRefGoogle Scholar
  5. 5.
    S. Hong-Tao, W. Xiao-Ping, K. Zhi-Qi, W. Li-Jun, W. Jin-Ye, S. Yi-Qing, Chin. Phys. B 24, 047701 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    S. Huang, T.-D. Kim, J. Luo, S.K. Hau, Z. Shi et al., Appl. Phys. Lett. 96, 243311 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    C. Wang, L. Yin, L. Zhang, Y. Qi, N. Lun, N. Liu, Langmuir 26, 12841 (2010)CrossRefGoogle Scholar
  8. 8.
    W. Yang, C.A. Wolden, Thin Solid Films 515, 1708 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Y.M. Sung, H.J. Kim, Thin Solid Films 515, 4996 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    M. Manickam, P. Singh, T.B. Issa, S. Thurgate, J. Appl. Electrochem. 36, 599 (2006)CrossRefGoogle Scholar
  11. 11.
    C.G. Silva, J.L. Faria, Photochem. Photobiol. Sci. 8, 705 (2009)CrossRefGoogle Scholar
  12. 12.
    M.L. Lavcevic, A. Turkovic, Thin Solid Films 419, 105 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    M.H. Habibi, N. Talebian, J.H. Choi, Dyes Pigm. 73, 103 (2007)CrossRefGoogle Scholar
  14. 14.
    C.J. Tavares, J. Vieira, L. Rebouta, G. Hungerford, P. Coutinho, V. Teixeira, J.O. Carneiro, A.J. Fernandes, Mater. Sci. Eng. B 138, 139 (2007)CrossRefGoogle Scholar
  15. 15.
    S.B. Amor, G. Baud, M. Jacquet, N. Pichon, Surf. Coat. Technol. 102, 63 (1998)CrossRefGoogle Scholar
  16. 16.
    Z. Wang, U. Helmersson, P.O. Kall, Thin Solid Films 405, 50 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    J.A. Stride, N.T. Tuong, Solid State Phenom. 162, 261 (2010)CrossRefGoogle Scholar
  18. 18.
    A.O. Ibhadon, P. Fitzpatrick, Catalysts 3, 189 (2013)CrossRefGoogle Scholar
  19. 19.
    T.K. Das, P. Ilaiyaraja, P.S.V. Mocherla, G.M. Bhalerao, C. Sudakar, Solar Energ. Mat. Sol. C 144, 194 (2016)CrossRefGoogle Scholar
  20. 20.
    K.M. Reddy, S.V. Manorama., A.R. Reddy, J. Solid State Chem. 158, 180 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    B. Zhou, X. Jiang, Z. liu, R. Shen, A. V.Rogachev, Mater. Sci. Semicond. Proc. 16, (2013) 513Google Scholar
  22. 22.
    A. Burton, Environ. Health Perspect. 120, A 229 (2012)CrossRefGoogle Scholar
  23. 23.
    S.M. Lomnicki, H. Wu, S.N. Osborne, J.M. Pruett, R.L. McCarley, E. Poliakoff, B. Dellinger, Mater. Sci. Eng. B 175, 136 (2010)CrossRefGoogle Scholar
  24. 24.
    M.A. Awad, N.M.A. Hadia, Optik 142, 334 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    M.M. Hasan, A.S.M.A. Haseeb, R. Saidur, H.H. Masjuki, M. Hamdi, Opt. Mater. 32, 690 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    M.H. Suhail, G.M. Rao, S. Mohan, J. Appl. Phys. 71, 1421 (1992)ADSCrossRefGoogle Scholar
  27. 27.
    C.-C. Ting, S.-Y. Chen, D.-M. Liu, J. Appl. Phys. 88, 4628 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    R.D. Shannon, J.A. Pask, J. Am. Ceram. Soc. 48, 391 (1965)CrossRefGoogle Scholar
  29. 29.
    I. Manouchehri, K. Gholami, B. Astinchap, R. Mordian, D. Mehrparvar, Optik 127, 5383 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    S.D. Sartale, A.A. Ansari, S.-J. Rezvani, Mater. Sci. Semicond. Proc. 16, (2013) 2005Google Scholar
  31. 31.
    S.C. Jung, B.H. Kim, S.J. Kim, N. Imaishi, Y.I. Cho, Chem. Vap. Deposition 11, 137 (2005)CrossRefGoogle Scholar
  32. 32.
    F. Lopez-Huerta, B. Cervantes, O. Gonzalez, J. Hernandez-Torres, L. Garcia-Gonzalez, R. Vega, A.L. Herrera-May, E. Soto, Materials 7, 4105 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    W.D. Callister Jr., D.G. Rethwisch, Materials science and engineering an introduction, Eighth edition (Wiley, Inc., 2010) Ch. 5.Google Scholar
  34. 34.
    W. He, H. Ya-fang, C. Xi-Chen. Chin. J. Aeronaut. 16, 42 (2003)CrossRefGoogle Scholar
  35. 35.
    A. Morteza Ali, S. Ramezani Sani, Thin Solid Films 534, 183 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    K.K. Saini, S.D. Sharma, M. Chanderkant, D. Kar, C.P. Singh, Sharma, J. Non-Cryst. Solids 353, 2469 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    J. Tauc, Amorphous and Liquid Semiconductors (Plenum, London, 1974)CrossRefGoogle Scholar
  38. 38.
    T. Fujii, N. Sakata, J. Takada, Y. Miura, Y. Daitoh, M. Takano, J.Mater. Res. 9, 1468 (1994)ADSCrossRefGoogle Scholar
  39. 39.
    J. Carlos Colmenares, R. Luque, J.M. Campelo, F. Colmenares, Z. Karpiński, A.A. Romero, Materials 2, 2228 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    S.H. Mohamed, H.M. Ali, H.A. Mohamed, A.M. Salem, Eur. Phys. J. Appl. Phys. 31, 95 (2005)ADSCrossRefGoogle Scholar
  41. 41.
    R. Swanepoel, J. Phys. E 16, 1214 (1983)ADSCrossRefGoogle Scholar
  42. 42.
    S.H. Mohamed, E.R. Shaaban, Mater. Chem. Phys. 121, 249 (2010)CrossRefGoogle Scholar
  43. 43.
    Q. Ye, P.Y. Liu, Z.F. Tang, L. Zhai, Vacuum 81, 627 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    M.A. Awad, E.M.M. Ibrahim, A.M. Ahmed, Eur. Phys. J. Appl. Phys. 72, 30303 (2015)ADSCrossRefGoogle Scholar
  45. 45.
    X. Zhang, X. Yan, J. Zhao, Z. Qin, Y. Zhang, Mater. Lett. 63, 444 (2009)CrossRefGoogle Scholar
  46. 46.
    A.B. Patil, K.R. Patil, S.K. Pardeshi, J. Hazard. Mater. 183, 315 (2010)CrossRefGoogle Scholar
  47. 47.
    A. Baral, D.P. Das, M. Minakshi, M.K. Ghosh, D.K. Padhi, Chem. Select 1, 4277 (2016)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceSohag UniversitySohagEgypt

Personalised recommendations