Skip to main content
Log in

The effect of barrier layer conditions on the electrodeposition efficiency and magnetic properties of Fe nanowire arrays

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Fabrication of different nanostructures based on template-assisted methods has become conventional, due to their numerous potential applications. In this paper, Fe nanowire arrays (NWAs) were fabricated using a pulsed electrodeposition in porous anodic alumina (PAA) templates. The effect of alumina barrier layer conditions such as barrier layer temperature (BLT) and Cu pre-plating at the dendritic sections of pores on the electrodeposition efficiency (EE) and magnetic properties of Fe NWAs in two pH regimes (2.6 and 4.0) has been investigated. At pH 4.0, BLT was changed from ~ 4 to ~ 32 °C, leading to an EE of approximately 60% for BLT ~ 24 °C. Moreover, to overcome the problem of low EE ~ 2% at the pH of 2.6, Cu pre-plating was performed with deposition current densities of 25 and 35 mA/cm2. This procedure increased the EE up to about 40%, providing a promising approach to enhance the EE in the fabrication of Fe NWAs. Furthermore, a nearly constant trend of magnetic properties was observed for highly crystalline Fe NWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

NWAs:

Nanowire arrays

PAA:

Porous anodic alumina

BLT:

Barrier layer temperature

EE:

Electrodeposition efficiency

M s :

Saturation magnetic moment

References

  1. Q. Liu, C. Gao, J. Xiao, D. Xue, Size effects on magnetic properties in Fe0.68 Ni0.32 alloy nanowire arrays, J. Magn. Magn. Mater. 260, 151–155 (2003).

    Article  ADS  Google Scholar 

  2. P.D. McGary, L. Tan, J. Zou, B.J. Stadler, P.R. Downey, A.B. Flatau, Magnetic nanowires for acoustic sensors. J. Appl. Phys. 99, 08B310 (2006)

    Article  Google Scholar 

  3. M. Vázquez, Soft magnetic wires. Physica B 299, 302–313 (2001)

    Article  ADS  Google Scholar 

  4. V. Haehnel, S. Fähler, P. Schaaf, M. Miglierini, C. Mickel, L. Schultz, H. Schlörb, Towards smooth and pure iron nanowires grown by electrodeposition in self-organized alumina membranes. Acta Mater. 58, 2330–2337 (2010)

    Article  Google Scholar 

  5. J. Smyth, S. Schultz, D. Kern, H. Schmid, D. Yee, Hysteresis of submicron permalloy particulate arrays. J. Appl. Phys. 63, 4237–4239 (1988)

    Article  ADS  Google Scholar 

  6. J. Wong, A. Scherer, M. Todorovic, S. Schultz, Fabrication and characterization of high aspect ratio perpendicular patterned information storage media in an Al2O3/GaAs substrate. J. Appl. Phys. 85, 5489–5491 (1999)

    Article  ADS  Google Scholar 

  7. P. Vavassori, V. Metlushko, M. Grimsditch, B. Ilic, P. Neuzil, R. Kumar, Magneto-optical studies of superlattice dot arrays. Phys. Rev. B 61, 5895 (2000)

    Article  ADS  Google Scholar 

  8. C. Moreau, J. Caballero, R. Loloee, W. Pratt Jr., N.O. Birge, Fabrication and magnetic characterization of single domain Co91Fe9 nanostructures. J. Appl. Phys. 87, 6316–6318 (2000)

    Article  ADS  Google Scholar 

  9. F. Rousseaux, D. Decanini, F. Carcenac, E. Cambril, M. Ravet, C. Chappert, N. Bardou, B. Bartenlian, P. Veillet, Study of large area high density magnetic dot arrays fabricated using synchrotron radiation based X-ray lithography. J. Vac. Sci. Technol. B 13, 2787–2791 (1995)

    Article  Google Scholar 

  10. C. Pike, A. Fernandez, An investigation of magnetic reversal in submicron-scale Co dots using first order reversal curve diagrams. J. Appl. Phys. 85, 6668–6676 (1999)

    Article  ADS  Google Scholar 

  11. A. Fernandez, M. Gibbons, M. Wall, C. Cerjan, Magnetic domain structure and magnetization reversal in submicron-scale Co dots. J. Magn. Magn. Mater. 190, 71–80 (1998)

    Article  ADS  Google Scholar 

  12. L. Kong, L. Zhuang, M. Li, B. Cui, S.Y. Chou, Fabrication, writing, and reading of 10 Gbits/in2 longitudinal quantized magnetic disks with a switching field over 1000 Oe. Jpn. J. Appl. Phys. 37, 5973–5975 (1998)

    Article  ADS  Google Scholar 

  13. Y.M. Cho, W.K. Choo, H. Kim, D. Kim, Y. Ihm, Effects of rapid thermal annealing on the ferromagnetic properties of sputtered Zn1−x (Co0.5 Fe0.5) × O thin films. Appl. Phys. Lett. 80, 3358–3360 (2002)

    Article  ADS  Google Scholar 

  14. S. Wirth, S. Von Molnar, M. Field, D. Awschalom, Magnetism of nanometer-scale iron particles arrays. J. Appl. Phys. 85, 5249–5254 (1999)

    Article  ADS  Google Scholar 

  15. C.R. Martin, Membrane-based synthesis of nanomaterials. Chem. Mater. 8, 1739–1746 (1996)

    Article  Google Scholar 

  16. J. Montero-Moreno, M. Belenguer, M. Sarret, C. Müller, Production of alumina templates suitable for electrodeposition of nanostructures using stepped techniques. Electrochim. Acta 54, 2529–2535 (2009)

    Article  Google Scholar 

  17. H. Asoh, S. Ono, T. Hirose, M. Nakao, H. Masuda, Growth of anodic porous alumina with square cells. Electrochim. Acta 48, 3171–3174 (2003)

    Article  Google Scholar 

  18. I. Vrublevsky, A. Jagminas, J. Schreckenbach, W.A. Goedel, Electronic properties of electrolyte/anodic alumina junction during porous anodizing. Appl. Surf. Sci. 253, 4680–4687 (2007)

    Article  ADS  Google Scholar 

  19. K. Nielsch, F. Müller, A.-P. Li, U. Gösele, Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition. Adv. Mater. 12, 582–586 (2000)

    Article  Google Scholar 

  20. M. Michalska-Domańska, M. Norek, W.J. Stępniowski, B. Budner, Fabrication of high quality anodic aluminum oxide (AAO) on low purity aluminum—a comparative study with the AAO produced on high purity aluminum. Electrochim. Acta 105, 424–432 (2013)

    Article  Google Scholar 

  21. C. Sousa, D. Leitao, M. Proenca, A. Apolinario, J. Correia, J. Ventura, J. Araujo, Tunning pore filling of anodic alumina templates by accurate control of the bottom barrier layer thickness. Nanotechnology 22, 315602 (2011)

    Article  Google Scholar 

  22. J. Azevedo, C. Sousa, J. Ventura, A. Apolinario, A. Mendes, J. Araujo, Ultra-long Fe nanowires by pulsed electrodeposition with full filling of alumina templates. Mater. Res. Express 1, 015028 (2014)

    Article  ADS  Google Scholar 

  23. W. Cheng, M. Steinhart, U. Gösele, R.B. Wehrspohn, Tree-like alumina nanopores generated in a non-steady-state anodization. J. Mater. Chem. 17, 3493–3495 (2007)

    Article  Google Scholar 

  24. M. Ghaffari, A. Ramazani, M.A. Kashi, Improvement in the microstructure and magnetic properties in arrays of dc pulse electrodeposited Co nanowires induced by Cu pre-plating. J. Phys. D Appl. Phys. 46, 295002 (2013)

    Article  Google Scholar 

  25. A. Yin, J. Li, W. Jian, A. Bennett, J. Xu, Fabrication of highly ordered metallic nanowire arrays by electrodeposition. Appl. Phys. Lett. 79, 1039–1041 (2001)

    Article  ADS  Google Scholar 

  26. M. Sun, G. Zangari, R.M. Metzger, Cobalt island arrays with in-plane anisotropy electrodeposited in highly ordered alumite. IEEE Trans. Magn. 36, 3005–3008 (2000)

    Article  ADS  Google Scholar 

  27. M.S. Salem, P. Sergelius, R. Zierold, J.M.M. Moreno, D. Görlitz, K. Nielsch, Magnetic characterization of nickel-rich NiFe nanowires grown by pulsed electrodeposition. J. Mater. Chem. 22, 8549–8557 (2012)

    Article  Google Scholar 

  28. S. Krimpalis, O.-G. Dragos, A.-E. Moga, N. Lupu, H. Chiriac, Magnetization processes in electrodeposited NiFe/Cu multilayered nanowires. J. Mater. Res. 26, 1081–1090 (2011)

    Article  ADS  Google Scholar 

  29. H. Hu, H. Chen, J. Chen, G. Wu, Magnetic properties of (110)-and (200)-oriented Fe-nanowire arrays. Phys. B 368, 100–104 (2005)

    Article  ADS  Google Scholar 

  30. A. Ramazani, M.A. Kashi, M. Alikhani, S. Erfanifam, Optimized microstructure and magnetic properties in arrays of ac electrodeposited Co nanowires induced by the continuous and pulse electrodeposition. J. Phys. D Appl. Phys. 40, 5533 (2007)

    Article  ADS  Google Scholar 

  31. K.M. Razeeb, F.M. Rhen, S. Roy, Magnetic properties of nickel nanowires: effect of deposition temperature. J. Appl. Phys. 105, 083922 (2009)

    Article  ADS  Google Scholar 

  32. A. Rashidi, A. Amadeh, The effect of current density on the grain size of electrodeposited nanocrystalline nickel coatings. Surf. Coat. Technol. 202, 3772–3776 (2008)

    Article  Google Scholar 

  33. C. Cui, B. Wang, W. Yang, J. Sun, Effect of deposition voltage and Co2+ concentration on the texture and magnetic properties of Co nanowire arrays, J. Crystal Growth 324, 168–171 (2011)

    Article  ADS  Google Scholar 

  34. M. Almasi Kashi, A. Ramazani, M. Ghaffari, V. Isfahani, The effect of growth rate enhancement on the magnetic properties and microstructures of ac electrodeposited Co nanowires using non-symmetric reductive/oxidative voltage. J. Cryst. Growth 311, 4581–4586 (2009)

    Article  ADS  Google Scholar 

  35. J. Azevedo, C. Sousa, A. Mendes, J. Araújo, Influence of the rest pulse duration in pulsed electrodeposition of Fe nanowires. J. Nanosci. Nanotechnol. 12, 9112–9117 (2012)

    Article  Google Scholar 

  36. A. Ramazani, M.A. Kashi, V.B. Isfahani, M. Ghaffari, The influence of crystallinity enhancement on the magnetic properties of ac electrodeposited Fe nanowires. Appl. Phys. A 98, 691–697 (2010)

    Article  ADS  Google Scholar 

  37. D. Leitao, A. Apolinario, C. Sousa, J. Ventura, J. Sousa, M. Vazquez, J. Araujo, Nanoscale topography: a tool to enhance pore order and pore size distribution in anodic aluminum oxide. J. Phys. Chem. C 115, 8567–8572 (2011)

    Article  Google Scholar 

  38. M. Almasi Kashi, A. Ramazani, A. Esmaeily, Magnetostatic interaction investigation of CoFe alloy nanowires by first-order reversal-curve diagrams. IEEE Trans. Magn. 49, 1167–1171 (2013)

    Article  ADS  Google Scholar 

  39. Y. Sui, B. Cui, L. Martınez, R. Perez, D.J. Sellmyer, Pore structure, barrier layer topography and matrix alumina structure of porous anodic alumina film. Thin Solid Films 406, 64–69 (2002)

    Article  ADS  Google Scholar 

  40. K. Nielsch, J. Choi, K. Schwirn, R.B. Wehrspohn, U. Gösele, Self-ordering regimes of porous alumina: the 10 porosity rule. Nano Lett. 2, 677–680 (2002)

    Article  ADS  Google Scholar 

  41. D.V. Kumar, S. Ayyagari, M. Prasad, Mechanical characteristics and electrochemical behaviour of electrodeposited nanocrystalline iron and iron-nickel alloy. Mater. Chem. Phys. 201, 26–34 (2017)

    Article  Google Scholar 

  42. F.E. Atalay, H. Kaya, S. Atalay, S. Tari, Influences of deposition time and pH on magnetic NiFe nanowires fabrication. J. Alloy. Compd. 469, 458–463 (2009)

    Article  Google Scholar 

  43. M. Noormohammadi, M. Moradi, Structural engineering of nanoporous alumina by direct cooling the barrier layer during the aluminum hard anodization. Mater. Chem. Phys. 135, 1089–1095 (2012)

    Article  Google Scholar 

  44. H. Venkatasetty, Electrodeposition of thin magnetic permalloy films. J. Electrochem. Soc. 117, 403–407 (1970)

    Article  Google Scholar 

  45. A. Montazer, A. Ramazani, M. Almasi, Kashi, Magnetically extracted microstructural development along the length of Co nanowire arrays: The interplay between deposition frequency and magnetic coercivity. J. Appl. Phys. 120, 113902 (2016)

    Article  ADS  Google Scholar 

  46. C. Sousa, D. Leitao, M. Proença, A. Apolinário, A. Azevedo, N. Sobolev, S. Bunyaev, Y.G. Pogorelov, J. Ventura, J. Araujo, Probing the quality of Ni filled nanoporous alumina templates by magnetic techniques. J. Nanosci. Nanotechnol. 12, 7486–7490 (2012)

    Article  Google Scholar 

  47. A.S. Goncharova, S.V. Sotnichuk, A.S. Semisalova, T.Y. Kiseleva, I. Sergueev, M. Herlitschke, K.S. Napolskii, A.A. Eliseev, Oriented arrays of iron nanowires: synthesis, structural and magnetic aspects., J. Sol Gel. Sci. Technol. 81, 1–6 (2016)

    Google Scholar 

  48. M. Irfan, U. Khan, W. Li, N. Adeela, K. Javed, X. Han, Magnetic investigations of post-annealed metallic Fe nanowires via electrodeposition method. Mater. Lett. 180, 235–238 (2016)

    Article  Google Scholar 

  49. R. Han, W. Li, W. Pan, M. Zhu, D. Zhou, F.-s. Li, 1D magnetic materials of Fe3 O4 and Fe with high performance of microwave absorption fabricated by electrospinning method. Sci. Rep. 4, 7493 (2014)

    Article  ADS  Google Scholar 

  50. B.D. Cullity, C.D. Graham, Introduction to magnetic materials (John Wiley & Sons, New Jersey 2011)

    Google Scholar 

  51. X. Huang, L. Li, X. Luo, X. Zhu, G. Li, Orientation-controlled synthesis and ferromagnetism of single crystalline Co nanowire arrays. J. Phys. Chem. C 112, 1468–1472 (2008)

    Article  Google Scholar 

  52. J. Xu, K. Wang, Pulsed electrodeposition of monocrystalline Ni nanowire array and its magnetic properties. Appl. Surf. Sci. 254, 6623–6627 (2008)

    Article  ADS  Google Scholar 

  53. D. AlMawlawi, N. Coombs, M. Moskovits, Magnetic properties of Fe deposited into anodic aluminum oxide pores as a function of particle size. J. Appl. Phys. 70, 4421–4425 (1991)

    Article  ADS  Google Scholar 

  54. G. Sharma, M.V. Pishko, C.A. Grimes, Fabrication of metallic nanowire arrays by electrodeposition into nanoporous alumina membranes: effect of barrier layer. J. Mater. Sci. 42, 4738–4744 (2007)

    Article  ADS  Google Scholar 

  55. C.T. Sousa, A. Apolinario, D.C. Leitao, A.M. Pereira, J. Ventura, J.P. Araujo, Precise control of the filling stages in branched nanopores. J. Mater. Chem. 22, 3110–3116 (2012)

    Article  Google Scholar 

  56. A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications (Wiley, New York, 1980)

    Google Scholar 

  57. X. Zhang, G. Wen, Y. Chan, R. Zheng, X. Zhang, N. Wang, Fabrication and magnetic properties of ultrathin Fe nanowire arrays. Appl. Phys. Lett. 83, 3341–3343 (2003)

    Article  ADS  Google Scholar 

  58. S. Yang, H. Zhu, D. Yu, Z. Jin, S. Tang, Y. Du, Preparation and magnetic property of Fe nanowire array. J. Magn. Magn. Mater. 222, 97–100 (2000)

    Article  ADS  Google Scholar 

  59. M. Ou, T. Yang, Y. Chen, Anisotropic magnetism and magnetoresistance in iron nanowire arrays. Chin. J. Phys. 47, 848–853 (2009)

    Google Scholar 

  60. X. Wang, C. Li, G. Chen, C. Peng, L. He, L. Yang, Synthesis and characterization of Fe nanowire arrays by AC electrodeposition in PAMs. Surf. Rev. Lett. 17, 419–423 (2010)

    Article  Google Scholar 

  61. J.B. Wang, X.Z. Zhou, Q.F. Liu, D.S. Xue, F.S. Li, B. Li, H.P. Kunkel, G. Williams, Magnetic texture in iron nanowire arrays. Nanotechnology 15, 485 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the University of Kashan for supporting this work by Grant no. 159023/32.

Funding

This study was funded by the University of Kashan (Grant no. 159023/32).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Akhtarianfar.

Ethics declarations

By submitting the manuscript, the authors understand that the material presented in this manuscript has not been published before, nor has it been submitted for publication to another journal. The corresponding author attests that this study has been approved by all the co-authors concerned.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhtarianfar, S.F., Ramazani, A., Almasi-Kashi, M. et al. The effect of barrier layer conditions on the electrodeposition efficiency and magnetic properties of Fe nanowire arrays. Appl. Phys. A 124, 379 (2018). https://doi.org/10.1007/s00339-018-1805-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1805-0

Navigation