Applied Physics A

, 124:378 | Cite as

Optical absorption and gamma-radiation-shielding parameter studies of Tm3+-doped multicomponent borosilicate glasses

  • G. Lakshminarayana
  • M. I. Sayyed
  • S. O. Baki
  • A. Lira
  • M. G. Dong
  • Kawa M. Kaky
  • I. V. Kityk
  • M. A. Mahdi


Different concentrations (0.1‒2.0 mol%) of Tm3+-doped multicomponent borosilicate glasses with 10 mol% Li2O (alkali) or MgO (alkaline) have been synthesized and their optical absorption and radiation shielding features were studied. For both Li2O and MgO series 0.5 mol% Tm3+-doped glass samples, the evaluated Ωλ (λ = 2, 4, and 6) Judd–Ofelt (JO) intensity parameters from experimental oscillator strengths were used in estimating the radiative transition probabilities (AR), branching ratios (βR), and radiative lifetimes (τR) for several emission transitions. Using the XCOM software, the mass attenuation coefficients (µ/ρ) for all the fabricated glasses were evaluated within the 0.015‒10 MeV energy range. Also, the (µ/ρ) values were calculated at 0.356, 0.662, 1.173, and 1.33 MeV photon energies by MCNP5 simulation code and the results were compared with those obtained by XCOM. The (µ/ρ) values for Li2O, as well as MgO series glasses, increase with the addition of Tm2O3 and these values for MgO series glasses are slightly higher with respect to Li2O series glasses. From the (µ/ρ) values, effective atomic number (Zeff), half-value layer (HVL), and mean free path (MFP) were calculated and the HVL and MFP results revealed that high-energy photons have more penetration into a glass sample compared to low-energy photons. Further, geometric progression (GP) fitting method was utilized to calculate the exposure buildup factor (EBF) within the 0.015‒15 MeV energy range. The 2.0 mol% Tm2O3-doped glasses show a better ability to attenuate gamma-rays in comparison to other glass samples, so the addition of Tm2O3 content leads to improvement of the shielding efficiency of the prepared glasses.



The authors would like to thank Universiti Putra Malaysia (UPM), Malaysia, as this reported research work is supported and funded by the UPM under the UPM/700-2/1/GPB/2017/9554200 Grant.


  1. 1.
    S. Nambiar, J.T.W. Yeow, Polymer-composite materials for radiation protection. ACS Appl. Mater. Interfaces 4, 5717–5726 (2012). CrossRefGoogle Scholar
  2. 2.
    R. Li, Y. Gu, Y. Wang, Z. Yang, M. Li, Z. Zhang, Effect of particle size on gamma radiation shielding property of gadolinium oxide dispersed epoxy resin matrix composite. Mater. Res. Express 4, 035035 (2017). ADSCrossRefGoogle Scholar
  3. 3.
    J.-H. Liu, Q.-P. Zhang, N. Sun, Y. Zhao, R. Shi, Y.-L. Zhou, J. Zheng, Elevated gamma-rays shielding property in lead-free bismuth tungstate by nanofabricating structures. J. Phys. Chem. Solids 112, 185–189 (2018). ADSCrossRefGoogle Scholar
  4. 4.
    G. Lakshminarayana, K.M. Kaky, S.O. Baki, A. Lira, A.N. Meza-Rocha, C. Falcony, U. Caldiño, I.V. Kityk, A. Méndez-Blas, A.F. Abas, M.T. Alresheedi, M.A. Mahdi, Nd3+-doped heavy metal oxide based multicomponent borate glasses for 1.06 µm solid-state NIR laser and O-band optical amplification applications. Opt. Mater. 78, 142–159 (2018). ADSCrossRefGoogle Scholar
  5. 5.
    M.J.F. Digonnet (ed.), Rare-Earth-Doped Fiber Lasers and Amplifiers, Revised and Expanded (Series: Optical Science and Engineering). CRC Press, Boca Raton (ISBN 9780824704582 - CAT# DK1715) (2001)Google Scholar
  6. 6.
    D.A. Rodríguez-Carvajal, A.N. Meza-Rocha, U. Caldiño, R. Lozada-Morales, E. Alvarez, M.E. Zayas, Reddish-orange, neutral and warm white emissions in Eu3+, Dy3+ and Dy3+/Eu3+ doped CdO–GeO2–TeO2 glasses. Solid State Sci. 61, 70–76 (2016). ADSCrossRefGoogle Scholar
  7. 7.
    S.A. Tijani, S.M. Kamal, Y. Al-Hadeethi, M. Arib, M.A. Hussein, S. Wageh, L.A. Dim, Radiation shielding properties of transparent erbium zinc tellurite glass system determined at medical diagnostic energies. J. Alloys Compd. 741, 293–299 (2018). CrossRefGoogle Scholar
  8. 8.
    M. Dogra, K.J. Singh, K. Kaur, V. Anand, P. Kaur, P. Singh, B.S. Bajwa, Investigation of gamma ray shielding, structural and dissolution rate properties of Bi2O3–BaO–B2O3–Na2O glass system. Radiat. Phys. Chem. 144, 171–179 (2018). ADSCrossRefGoogle Scholar
  9. 9.
    L. Shamshad, G. Rooh, P. Limkitjaroenporn, N. Srisittipokakun, W. Chaiphaksa, H.J. Kim, J. Kaewkhao, A comparative study of gadolinium based oxide and oxyfluoride glasses as low energy radiation shielding materials. Prog. Nucl. Energy 97, 53–59 (2017). CrossRefGoogle Scholar
  10. 10.
    A. El-Sayed, M.A. Waly, M.A. Fusco, Bourham, Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials. Ann. Nucl. Energy 96, 26–30 (2016). CrossRefGoogle Scholar
  11. 11.
    K. Kaur, K.J. Singh, V. Anand, Correlation of gamma ray shielding and structural properties of PbO–BaO–P2O5 glass system. Nucl. Eng. Des. 285, 31–38 (2015). CrossRefGoogle Scholar
  12. 12.
    B.O. El-bashir, M.I. Sayyed, M.H.M. Zaid, K.A. Matori, Comprehensive study on physical, elastic and shielding properties of ternary BaO–Bi2O3–P2O5 glasses as a potent radiation shielding material. J. Non-Cryst. Solids 468, 92–99 (2017). ADSCrossRefGoogle Scholar
  13. 13.
    M.I. Sayyed, G. Lakshminarayana, M.G. Dong, M. Ersundu, A.E. Ersundu, I.V. Kityk, Investigation on gamma and neutron radiation shielding parameters for BaO/SrO–Bi2O3–B2O3 glasses. Radiat. Phys. Chem. 145, 26–33 (2018). ADSCrossRefGoogle Scholar
  14. 14.
    M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, K. Olsen, XCOM: Photon Cross Sections Database, NIST Standard Reference Database 8 (XGAM), (2010). Accessed Feb 2018
  15. 15.
    V.P. Singh, M.E. Medhat, S.P. Shirmardi, Comparative studies on shielding properties of some steel alloys using Geant4, MCNP, WinXCOM and experimental results. Radiat. Phys. Chem. 106, 255–260 (2015). ADSCrossRefGoogle Scholar
  16. 16.
    B. Aygün, T. Korkut, A. Karabulut, Determination and fabrication of new shield super alloys materials for nuclear reactor safety by experiments and Cern-Fluka Monte Carlo Simulation Code, Geant4 and WinXCom. J. Phys.: Conf. Series (2016). Google Scholar
  17. 17.
    P. Aryal, C.R. Kesavulu, H.J. Kim, S.W. Lee, S.J. Kang, J. Kaewkhao, N. Chanthima, B. Damdee, Optical and luminescence characteristics of Eu3+-doped B2O3:SiO2:Y2O3:CaO glasses for visible red laser and scintillation material applications. J. Rare Earths. (2018). Google Scholar
  18. 18.
    N.J. Cassingham, P.A. Bingham, R.J. Hand, S.D. Forder, Property modification of a high level nuclear waste borosilicate glass through the addition of Fe2O3. Glass Technol. Eur. J. Glass Sci. Technol. A 49, 21–26 (2008). Accessed Feb 2018
  19. 19.
    G. Lakshminarayana, S.O. Baki, A. Lira, U. Caldiño, A.N. Meza-Rocha, I.V. Kityk, A.F. Abas, M.T. Alresheedi, M.A. Mahdi, Effect of alkali/mixed alkali metal ions on the thermal and spectral characteristics of Dy3+:B2O3–PbO–Al2O3–ZnO glasses. J. Non-Cryst. Solids 481, 191–201 (2018). ADSCrossRefGoogle Scholar
  20. 20.
    G. Lakshminarayana, K.M. Kaky, S.O. Baki, A. Lira, P. Nayar, I.V. Kityk, M.A. Mahdi, Physical, structural, thermal, and optical spectroscopy studies of TeO2–B2O3–MoO3–ZnO–R2O (R = Li, Na, and K)/MO (M = Mg, Ca, and Pb) glasses. J. Alloys Compd. 690, 799–816 (2017). CrossRefGoogle Scholar
  21. 21.
    S. Shen, M. Naftaly, A. Jha, S.J. Wilson, Thulium-doped tellurite glasses for S-band amplification, Optical Fiber Communication Conference and Exhibit, 2001. OFC 2001. Paper TuQ6. IEEE. Anaheim, CA, USA.
  22. 22.
    Y.-P. Peng, X. Yuan, J. Zhang, L. Zhang, The effect of La2O3 in Tm3+-doped germanate-tellurite glasses for ~ 2 µm emission. Sci. Rep. 4, 5256/1–5256/5 (2014). Google Scholar
  23. 23.
    K.M. Kaky, G. Lakshminarayana, S.O. Baki, A. Lira, U. Caldiño, A.N. Meza-Rocha, C. Falcony, I.V. Kityk, Y.H. Taufiq-Yap, M.K. Halimah, M.A. Mahdi, Structural and optical studies of Er3+-doped alkali/alkaline oxide containing zinc boro-aluminosilicate glasses for 1.5 µm optical amplifier applications. Opt. Mater. 69, 401–419 (2017). ADSCrossRefGoogle Scholar
  24. 24.
    X. Wang, F. Lou, S. Wang, C. Yu, D. Chen, L. Hu, Spectroscopic properties of Tm3+/Al3+ co-doped sol–gel silica glass. Opt. Mater. 42, 287–292 (2015). ADSCrossRefGoogle Scholar
  25. 25.
    B.R. Judd, Optical absorption intensities of rare-earth ions. Phys. Rev. 127, 750–761 (1962). ADSCrossRefGoogle Scholar
  26. 26.
    G.S. Ofelt, Intensities of crystal spectra of rare-earth ions. J. Chem. Phys. 37, 511–520 (1962). ADSCrossRefGoogle Scholar
  27. 27.
    G. Lakshminarayana, S.O. Baki, A. Lira, I.V. Kityk, U. Caldiño, K.M. Kaky, M.A. Mahdi, Structural, thermal and optical investigations of Dy3+-doped B2O3–WO3–ZnO–Li2O–Na2O glasses for warm white light emitting applications. J. Lumin. 186, 283–300 (2017). CrossRefGoogle Scholar
  28. 28.
    M.G. Dong, R. El-Mallawany, M.I. Sayyed, H.O. Tekin, Shielding properties of 80TeO2–5TiO2–(15–x)WO3xAnOm glasses using WinXCom and MCNP5 code. Radiat. Phys. Chem. 141, 172–178 (2017). ADSCrossRefGoogle Scholar
  29. 29.
    M.I. Sayyed, H. Elhouichet, Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for boro-tellurite (B2O3–TeO2) glasses. Radiat. Phys. Chem. 130, 335–342 (2017). ADSCrossRefGoogle Scholar
  30. 30.
    R. Sharma, V. Sharma, P.S. Singh, T. Singh, Effective atomic numbers for some calcium–strontium-borate glasses. Ann. Nucl. Energy 45, 144–149 (2012). CrossRefGoogle Scholar
  31. 31.
    M.I. Sayyed, Investigations of gamma ray and fast neutron shielding properties of tellurite glasses with different oxide compositions. Can. J. Phys. 94, 1133–1137 (2016). ADSCrossRefGoogle Scholar
  32. 32.
    G. Lakshminarayana, A. Kumar, M.G. Dong, M.I. Sayyed, N.V. Long, M.A. Mahdi, Exploration of gamma radiation shielding features for titanate bismuth borotellurite glasses using relevant software program and Monte Carlo simulation code. J. Non-Cryst. Solids 481, 65–73 (2018). ADSCrossRefGoogle Scholar
  33. 33.
    M.G. Dong, M.I. Sayyed, G. Lakshminarayana, M. Ersundu, A.E. Ersundu, P. Nayar, M.A. Mahdi, Investigation of gamma radiation shielding properties of lithium zinc bismuth borate glasses using XCOM program and MCNP5 code. J. Non-Cryst. Solids 468, 12–16 (2017). ADSCrossRefGoogle Scholar
  34. 34.
  35. 35.
    V.P. Singh, N.M. Badiger, N. Chanthima, J. Kaewkhao, Evaluation of gamma-ray exposure buildup factors and neutron shielding for bismuth borosilicate glasses. Radiat. Phys. Chem. 98, 14–21 (2014). ADSCrossRefGoogle Scholar
  36. 36.
    K.A. Matori, M.I. Sayyed, H.A.A. Sidek, M.H.M. Zaid, V.P. Singh, Comprehensive study on physical, elastic and shielding properties of lead zinc phosphate glasses. J. Non-Cryst. Solids 457, 97–103 (2017). ADSCrossRefGoogle Scholar
  37. 37.
    M.I. Sayyed, Half value layer, mean free path and exposure buildup factor for tellurite glasses with different oxide compositions. J. Alloys Compd. 695, 3191–3197 (2017). CrossRefGoogle Scholar
  38. 38.
    Y. Harima, An historical review and current status of buildup factor calculations and applications. Radiat. Phys. Chem. 41, 631–672 (1993). ADSCrossRefGoogle Scholar
  39. 39.
    P.S. Singh, T. Singh, P. Kaur, Variation of energy absorption buildup factors with incident photon energy and penetration depth for some commonly used solvents. Ann. Nucl. Energy 35, 1093–1097 (2008). CrossRefGoogle Scholar
  40. 40.
    V.P. Singh, N.M. Badiger, J. Kaewkhao, Radiation shielding competence of silicate and borate heavy metal oxide glasses: comparative study. J. Non-Cryst. Solids 404, 167–173 (2014). ADSCrossRefGoogle Scholar
  41. 41.
    M.F. Kaplan, Concrete radiation shielding (Wiley, New York, 1989). (ISBN 0-470-21338-8)Google Scholar
  42. 42.
    I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24, 1389–1401 (1997). CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Wireless and Photonic Networks Research Centre, Faculty of EngineeringUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Department of Physics, Faculty of ScienceUniversity of TabukTabukSaudi Arabia
  3. 3.Department of Physics, Faculty of ScienceUniversiti Putra Malaysia, UPMSerdangMalaysia
  4. 4.Departamento de Física, Facultad de CienciasUniversidad Autónoma del Estado de MéxicoTolucaMexico
  5. 5.Department of Resource and Environment, School of MetallurgyNortheastern UniversityShenyangChina
  6. 6.Institute of Optoelectronics and Measuring Systems, Faculty of Electrical EngineeringCzestochowa University of TechnologyCzestochowaPoland

Personalised recommendations