Advertisement

Applied Physics A

, 124:385 | Cite as

Phase-field crystal simulation facet and branch crystal growth

  • Zhi Chen
  • Zhaoyang Wang
  • Xinrui Gu
  • Yufei Chen
  • Limei Hao
  • Jos de Wit
  • Kexin Jin
Article
  • 174 Downloads

Abstract

Phase-field crystal model with one mode is introduced to describe morphological transition. The relationship between growth morphology and smooth density distribution was investigated. The results indicate that the pattern selection of dendrite growth is caused by the competition between interface energy anisotropy and interface kinetic anisotropy based on the 2D phase diagram. When the calculation time increases, the crystal grows to secondary dendrite at the dimensionless undercooling equal to − 0.4. Moreover, when noise is introduced in the growth progress, the symmetry is broken in the growth mode, and there becomes irregular fractal-like growth morphology. Furthermore, the single crystal shape develops into polycrystalline when the noise amplitude is large enough. When the dimensionless undercooling is less than − 0.3, the noise has a significant effect on the growth shape. In addition, the growth velocity of crystal near to liquid phase line is slow, while the shape far away from the liquid adapts to fast growth. Based on the simulation results, the method was proved to be effective, and it can easily obtain different crystal shapes by choosing the different points in 2D phase diagram.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (nos.11102164, 11304243), the Natural Science Foundation of Shannxi Province, China (no. 2014JQ1039), the Fundamental Research Funds for the Central Universities of China (no. 3102016ZY027) and the Program of New Staff and Research Area Project of NWPU (no. 13GH014602).

References

  1. 1.
    L.Q. Chen, Annu. Rev. Mater. Sci. 32(1), 113 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Karma, D. Tourret, Curr. Opin. Solid State Mater. Sci. 20(1), 25 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    M.A. Jaafar, D.R. Rousse, S. Gibout, J.P. Bédécarrats, Renew. Sustain. Energy Rev. 74, 1064 (2017)CrossRefGoogle Scholar
  4. 4.
    R. Kobayashi, Phys. D 63(3–4), 410 (1993)CrossRefGoogle Scholar
  5. 5.
    A. Karma, W.J. Rappel, Phys. Rev. E 53(4), R3017 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    A. Karma, Phys. Rev. Lett. 87(11), 115701 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    N. Provatas, N. Goldenfeld, J. Dantzig, Phys. Rev. Lett. 80(15), 3308 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    J.J. Eggleston, G.B. Mcfadden, P.W. Voorhees, Phys. D 150(1), 91 (2001)CrossRefGoogle Scholar
  9. 9.
    Z. Chen, C.L. Chen, L.M. Hao, Can. J. Phys. 87(2, 117 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    G.Y. Chen, H.K. Lin, C.W. Lan, Acta Mater. 115, 324 (2016)CrossRefGoogle Scholar
  11. 11.
    M. Plapp, Philos. Mag. 91(1), 25 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    K.R. Elder, M. Katakowski, M. Haataja, M. Grant, Phys. Rev. Lett. 88(24), 245701 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    H. Emmerich, H. Löwen, R. Wittkowski, T. Gruhn, G.I. Tóth, G. Tegze, L. Gránásy, Adv. Phys. 61(6), 665 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    E. Asadi, M.A. Zaeem, JOM 67(1), 186 (2015)CrossRefGoogle Scholar
  15. 15.
    Y. Gao, L. Huang, Q. Deng, W. Zhou, Z. Luo, K. Lin, Acta Mater. 117, 238 (2016)CrossRefGoogle Scholar
  16. 16.
    G. Tegze, G.I. Tóth, L. Gránásy, Phys. Rev. Lett. 106(19), 195502 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    G. Tegze, L. Gránásy, G.I. Tóth, J.F. Douglas, T. Pusztai, Tuning the structure of non-equilibrium soft materials by varying the thermodynamic driving force for crystal ordering. Soft Matter 7(5), 1789 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    S. Tang, Y.M. Yu, J. Wang, J.J. Li, Z.J. Wang, Y.L. Guo, Y.H. Zhou, Phys. Rev. E 89(1), 012405 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    T. Yang, Z. Chen, J. Zhang, Y. Wang, Y. Lu, Chin. Phys. B 25(3), 038103 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    K.R. Elder, M. Grant, Phys. Rev. E 70(5), 051605 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    J. Mellenthin, A. Karma, M. Plapp, Phys. Rev. B 78(18), 184110 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    H. Ohnogi, Y. Shiwa, Phys. Rev. E 84(5), 051603 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    A.T. Skjeltorp, Phys. Rev. Lett. 58(14), 1444 (1987)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhi Chen
    • 1
  • Zhaoyang Wang
    • 1
  • Xinrui Gu
    • 2
  • Yufei Chen
    • 1
    • 4
  • Limei Hao
    • 3
  • Jos de Wit
    • 1
  • Kexin Jin
    • 1
  1. 1.Department of Applied Physics, School of ScienceNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Computer Science and Technology, School of Computer ScienceNorthwestern Polytechnical UniversityXi’anChina
  3. 3.Department of Applied Physics, School of ScienceXi’an University of Science and TechnologyXi’anChina
  4. 4.Honors CollegeNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations