Skip to main content
Log in

Exponential increase in the on–off ratio of conductance in organic memory devices by controlling the surface morphology of the devices

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have shown an exponential increase in the ratio of conductance in the on and off states of switching devices by controlling the surface morphology of the thin films for the device by depositing at different rotational speeds. The pinholes which are preferred topography on the surface at higher rotational speed give rise to higher on–off ratio of current from the devices fabricated at the speed. The lower rotational speed contributes to higher thickness of the film and hence no switching. For thicker films, the domain is formed due to phase segregation between the two components in the film, which also indicates that the film is far from thermal equilibrium. At higher speed, there is very little scope of segregation when the film is drying up. Hence, there are only few pinholes on the surface of the film which are shallow. So, the filamentary mechanism of switching in memory devices can be firmly established by varying the speed of thin film deposition which leads to phase segregation of the materials. Thus, the formation of filament can be regulated by controlling the thickness and the surface morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.W. Tang, S.A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987)

    Article  ADS  Google Scholar 

  2. M. Strukelj, R.H. Jordan, A. Dodabalapur, J. Am. Chem. Soc. 118, 1213 (1996)

    Article  Google Scholar 

  3. S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, J.C. Hummelen, Appl. Phys. Lett. 78, 841 (2001)

    Article  ADS  Google Scholar 

  4. B.A. Gregg, J. Phys. Chem. B 107, 4688 (2003)

    Article  Google Scholar 

  5. P. Peumans, V. Bulović, S.R. Forrest, Appl. Phys. Lett. 76, 3855 (2000)

    Article  ADS  Google Scholar 

  6. C.D. Dimitrakopoulos, P.R.L. Malenfant, Adv. Mater. 14, 99 (2002)

    Article  Google Scholar 

  7. S.-J. Kim, J.-S. Lee, Nano Lett. 10, 2884 (2010)

    Article  ADS  Google Scholar 

  8. K.S. Kumar, M. Ruben, Coord. Chem. Rev. 346, 176 (2017)

    Article  Google Scholar 

  9. M. Suda, Bull. Chem. Soc. Jpn. 91, 19 (2017)

    Article  Google Scholar 

  10. J. Zhang, W. Xu, P. Sheng, G. Zhao, D. Zhu, Acc. Chem. Res. 50, 1654 (2017)

    Article  Google Scholar 

  11. Q. Li, G. Mathur, S. Gowda, S. Surthi, Q. Zhao, L. Yu, J.S. Lindsey, D.F. Bocian, V. Misra, Adv. Mater. 16, 133 (2004)

    Article  Google Scholar 

  12. Z. Liu, A.A. Yasseri, J.S. Lindsey, D.F. Bocian, Science (80-.) 302, 1543 (2003)

    Article  ADS  Google Scholar 

  13. K.M. Roth, J.S. Lindsey, D.F. Bocian, W.G. Kuhr, Langmuir 18, 4030 (2002)

    Article  Google Scholar 

  14. T. Furukawa, Phase Transit. A Multinatl. J. 18, 143 (1989)

    Article  Google Scholar 

  15. M. Kiguchi, S. Fujii, Bull. Chem. Soc. Jpn. 90, 1 (2016)

    Article  Google Scholar 

  16. J. Kevorkian, M.M. Labes, D.C. Larson, D.C. Wu, Discuss. Faraday Soc. 51, 139 (1971)

    Article  Google Scholar 

  17. A. Bandyopadhyay, A.J. Pal, Appl. Phys. Lett. 82, 1215 (2003)

    Article  ADS  Google Scholar 

  18. A. Bandyopadhyay, A.J. Pal, Appl. Phys. Lett. 84, 999 (2004)

    Article  ADS  Google Scholar 

  19. Z. Liu, F. Xue, Y. Su, K. Varahramyan, IEEE Electron Device Lett. 27, 151 (2006)

    Article  ADS  Google Scholar 

  20. L. Ma, J. Liu, S. Pyo, Y. Yang, Appl. Phys. Lett. 80, 362 (2002)

    Article  ADS  Google Scholar 

  21. L.P. Ma, J. Liu, Y. Yang, Appl. Phys. Lett. 80, 2997 (2002)

    Article  ADS  Google Scholar 

  22. G. Vyas, P. Dagar, S. Sahu, Appl. Phys. Lett. 108, 233301 (2016)

    Article  ADS  Google Scholar 

  23. F. Zhang, C. Di, N. Berdunov, Y. Hu, Y. Hu, X. Gao, Q. Meng, H. Sirringhaus, D. Zhu, Adv. Mater. 25, 1401 (2013)

    Article  Google Scholar 

  24. S. Walheim, M. Böltau, J. Mlynek, G. Krausch, U. Steiner, Macromolecules 30, 4995 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Department of Science and Technology (DST) India, through INSPIRE Faculty Program with Project No. IFA12-PH-26. The authors are thankful to IIT Jodhpur for providing all the support. We are thankful to Suresh Dahiya of Department of Electrical Engineering for helping us in programming and interfacing the instruments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyajit Sahu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vyas, G., Dagar, P. & Sahu, S. Exponential increase in the on–off ratio of conductance in organic memory devices by controlling the surface morphology of the devices. Appl. Phys. A 124, 369 (2018). https://doi.org/10.1007/s00339-018-1791-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1791-2

Navigation