Applied Physics A

, 124:364 | Cite as

Band gap structures for 2D phononic crystals with composite scatterer

  • Xiao-qiao Qi
  • Tuan-jie Li
  • Jia-long Zhang
  • Zhen Zhang
  • Ya-qiong Tang


We investigated the band gap structures in two-dimensional phononic crystals with composite scatterer. The composite scatterers are composed of two materials (Bragg scattering type) or three materials (locally resonance type). The finite element method is used to calculate the band gap structure, eigenmodes and transmission spectrum. The variation of the location and width of band gap are also investigated as a function of material ratio in the scatterer. We have found that the change trends the widest band gap of the two phononic crystals are different as the material ratio changing. In addition to this, there are three complete band gaps at most for the Bragg-scattering-type phononic crystals in the first six bands; however, the locally resonance-type phononic crystals exist only two complete band gap at most in the first six bands. The gap-tuning effect can be controlled by the material ratio in the scatterer.



We gratefully acknowledge financial support from the National Natural Science Foundation of China (no. 51775403), and the work is supported by the Fundamental Research Funds for the Central Universities (Grant no. JB180404).


  1. 1.
    N. Mario, E. Carlo, C. Caterina et al., Phys. Proc. 3(1), 357 (2010)CrossRefGoogle Scholar
  2. 2.
    Y. Pennec, B. Rouuhani, E. Boudouti et al., Opt. Express 18(13), 14301 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    R.H. Olsson III, E.K. Ihab, Meas. Sci. Technol. 20(1), 012002 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    M.B. Assouar, M. Oudich. Appl, Phys. Lett. 100, 123506 (2012)Google Scholar
  5. 5.
    R.X. Feng, K.X. Liu, Phys. B 407, 2032 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    H.S. Shu, L. Zhao, X.N. Shi, W. Liu, D.Y. Shi, F.K. Kong, J. Appl. Phys. 118, 184904 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    S.W. Zhang, J.H. Wu, Z.P. Hu., J. Appl. Phys. 113, 163511 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    E. Coffy, T. Lavergne, M. Addouche, S. Euphrasie, P. Vairac, A. Khelif, J. Appl. Phys. 118, 214902 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    Y.B. Jin, Y. Pennec, Y.D. Pan, B. Djafari-Rouhani, J. Phys. D Appl. Phys. 50, 035301 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    B. Rostami-Dogolsara, M.K. Moravvej-Farshi, F. Nazari, Phys. Rev. B. 93, 014304 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    O. Oltulu, A.M. Mamedov, E. Ozbay, Appl. Phys. A Mater. 123, 212 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    J.G. Hu, W.Y. Tang, J. Phys. Chem. Solids 112, 233 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    M.B. Assouar, J.H. Sun, F.S. Lin, J.C. Hsu, Ultrasonics 54, 2159 (2014)CrossRefGoogle Scholar
  14. 14.
    H.S. Kang, K.I. Lee, S.W. Yoon, Jpn. J. Appl. Phys. 56, 066701 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    P. Langlet, A.C. Hlacky-Hennion, J.N. Decarpigny, J. Acoust. Soc. Am. 98, 2792 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    Z.L. Hou, B.M. Assouar, Phys. Lett. A. 372, 2091 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    J. Vollmann, D.M. Profunser, J. Bryner, J. Dual, Ultrasonics 44, e1215–e1221 (2006)CrossRefGoogle Scholar
  18. 18.
    M. Kafesaki, E.N. Economou, Phys. Rev. B. 60, 11993 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    J.V. Sànchez-Perez, D. Caballero, R. Martinez-Sala, C. Rubio, J. Sanchez Dehesa, F. Meseguer, J. LLinares, F. Galvez, Phys. Rev. Lett. 80, 5325 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    F.G. Wu, Z.L. Hou, Z.Y. Liu, Y.Y. Li, Phys. Lett. A. 292, 198 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    A. Khelif, B. Aoubiza, S. Mohammadi, A. Adibi, V. Laude, Phys. Rev. E 74, 046610 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    J.J. Chen, H.B. Zhang, X. Han, Jpn. J. Appl. Phys. 52, 034301 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    H.B. Zhang, J.J. Chen, X. Han., J. Appl. Phys. 112, 054503 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    X.P. Wang, P. Jiang, T.N. Chen, J. Zhu. Aip. Adv. 5, 107141 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    P. Jiang, X.P. Wang, T.N. Chen, J. Zhu, J. Appl. Phys. 117, 154301 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    C. Goffaux, J.P. Vigneron, Phys. Rev. B 64, 075118 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    F.G. Wu, Z.Y. Liu, Y.Y. Liu, Phys. Rev. E 66, 046628 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    X.S. Wen, J.H. Wen, D.L. Yu, G. Wang, Y.Z. Liu, X.Y. Han, Phononic Crystals (National Defense Industry Press, Beijing, 2008), pp. 135–139, 170–172Google Scholar
  29. 29.
    H.B. Zhang, Study on the tenability of the band gaps and their vibration reduction performance of phononic crystal plates (Hunan University, Changsha, China, 2016)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiao-qiao Qi
    • 1
  • Tuan-jie Li
    • 1
  • Jia-long Zhang
    • 2
  • Zhen Zhang
    • 1
  • Ya-qiong Tang
    • 1
  1. 1.School of Mechano-Electronic EngineeringXidian UniversityXi’anChina
  2. 2.School of Automation ControlNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations