Applied Physics A

, 124:366 | Cite as

Perovskite-sensitized solar cells-based Ga–TiO2 nanodiatom-like photoanode: the improvement of performance by perovskite crystallinity refinement

  • Akrajas Ali Umar
  • Altaf Yahya Ahmed Al-She’irey
  • Mohd Yusri Abd Rahman
  • Muhamad Mat Salleh
  • Munetaka Oyama


The structure and crystallinity of the photoactive materials in solar cell determines the exciton formation, carrier’s recombination, life-time and transportation in the devices. Here, we report that enhanced charge transportation, internal quantum efficiency and the carrier life-time can be achieved by modifying the structure, morphology of the organic perovskite thin film, enabling the improvement of the solar cell performance. The thin film structure modification was achieved via a thermal annealing in vacuum. In typical procedure, the power conversion efficiency of the PSC device can be upgraded from 0.5 to 2.9%, which is approximately 6 times increment, when the surface structure disorders are limited in the organic perovskite thin film. By optimizing the organic perovskite loading on the Ga–TiO2 diatom-like nanostructures photoanode and combining with a fine control of organic perovskite thin film structure, power conversion efficiency as high as 6.58% can be generated from the device. Electrochemical impedance spectroscopy and current–voltage analysis in the dark indicated that this process has effectively augmented the carrier life-time and limited the carrier recombination, enhancing the overall performance of the solar cell device. The preparation process and mechanism of the device performance improvement will be discussed.



The authors acknowledge the financial support received from the Ministry of Higher Education of Malaysia under the research fundamental FRGS/1/2016/STG02/UKM/02/2.

Compliance with ethical standards

Conflict of interest

Authors declare that they have no any competing financial interest in this publication.


  1. 1.
    H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 345, 542–546 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.-L. Wang, A.D. Mohite, Science 347, 522–525 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Nat. Commun. 5, 5784 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Nat. Mater. 13, 897–903 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    A.Y. Ahmed Al-She’irey, S.K. Md Saad, A.A. Umar, M.Y.A. Rahman, M.M. Salleh, J. Alloy. Compd. 674, 470–476 (2016)CrossRefGoogle Scholar
  6. 6.
    F.X. Xie, D. Zhang, H. Su, X. Ren, K.S. Wong, M. Gratzel, W.C. Choy, ACS Nano 9, 639–646 (2015)CrossRefGoogle Scholar
  7. 7.
    A. Dualeh, P. Gao, S.I. Seok, M.K. Nazeeruddin, M. Grätzel, Chem. Mater. 26, 6160–6164 (2014)CrossRefGoogle Scholar
  8. 8.
    A.A. Umar, M.M. Salleh, M. Yahaya, EPJ Appl. Phys. 29, 215–221 (2005)CrossRefGoogle Scholar
  9. 9.
    S. Javaid, M.A. Farrukh, I. Muneer, M. Shahid, M. Khaleeq-Ur-Rahman, A.A. Umar, Superlattices Microstruct. 82, 234–247 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    A.A. Umar, M.Y.A. Rahman, S.K.M. Saad, M.M. Salleh, Int. J. Electrochem. Sci., 7. (2012)Google Scholar
  11. 11.
    S.K.M. Saad, A.A. Umar, S. Nafisah, M.M. Salleh, B.Y. Majlis, RSM 2013 IEEE Reg. Symp. Micro Nanoelectronics, 402–405 (2013).
  12. 12.
    L. Roza, M.Y.A. Rahman, A.A. Umar, M.M. Salleh, J. Alloy. Compd. 618, 153–158 (2015)CrossRefGoogle Scholar
  13. 13.
    H. Yu, X. Liu, Y. Xia, Q. Dong, K. Zhang, Z. Wang, Y. Zhou, B. Song, Y. Li, J. Mater. Chem. A 4, 321–326 (2016)CrossRefGoogle Scholar
  14. 14.
    S.R. Raga, M.-C. Jung, M.V. Lee, M.R. Leyden, Y. Kato, Y. Qi, Chem. Mater. 27, 1597–1603 (2015)CrossRefGoogle Scholar
  15. 15.
    Y.B. Lee, D.H. Shin, K.-T. Park, W.J. Nam, Scripta Mater. 51, 355–359 (2004)CrossRefGoogle Scholar
  16. 16.
    S.T. Tan, A. Ali Umar, A. Balouch, S. Nafisah, M. Yahaya, C.C. Yap, M. Mat Salleh, I.V. Kityk, M. Oyama, ACS Comb. Sci. 16, 314–320 (2014)CrossRefGoogle Scholar
  17. 17.
    S.T. Tan, A.A. Umar, A. Balouch, M. Yahaya, C.C. Yap, M.M. Salleh, M. Oyama, Ultrason. Sonochem. 21, 754–760 (2014)CrossRefGoogle Scholar
  18. 18.
    N.J. Ridha, A.A. Umar, F. Alosfur, M.H.H. Jumali, M.M. Salleh, J. Nanosci. Nanotechnol. 13, 2667–2674 (2013)CrossRefGoogle Scholar
  19. 19.
    M. Gulen, G. Yildirim, S. Bal, A. Varilci, I. Belenli, M. Oz, J. Mater. Sci. Mater. Electron. 24, 467–474 (2013)CrossRefGoogle Scholar
  20. 20.
    N.J. Ridha, M.H.H. Jumali, A.A. Umar, F. Alosfur, Int. J. Electrochem. Sci. 8, 4583–4594 (2013)Google Scholar
  21. 21.
    I. Iwantono, F. Anggelina, S.K. Md Saad, M.Y.A. Rahman, A.A. Umar, Mater. Express 7, 312–318 (2017)CrossRefGoogle Scholar
  22. 22.
    A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M.K. Nazeeruddin, M. Grätzel, Adv. Func. Mater. 24, 3250–3258 (2014)CrossRefGoogle Scholar
  23. 23.
    A. Ali Umar, S. Nafisah, S.K. Md Saad, S. Tee Tan, A. Balouch, M. Mat Salleh, M. Oyama, Sol. Energy Mater. Sol. Cells 122, 174–182 (2014)CrossRefGoogle Scholar
  24. 24.
    S.K. Md Saad, A.A. Umar, H.Q. Nguyen, C.F. Dee, M.M. Salleh, M. Oyama, RSC Adv. 4, 57054–57063 (2014)CrossRefGoogle Scholar
  25. 25.
    S.K.M. Saad, A.A. Umar, M.Y.A. Rahman, M.M. Salleh, Appl. Surf. Sci. 353, 835–842 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    I.V. Kityk, K.J. Plucinski, J. Eboth́, A.A. Umar, M. Oyama, J. Appl. Phys., 98. (2005)Google Scholar
  27. 27.
    A. Ali Umar, M. Oyama, M. Mat Salleh, B. Yeop, Majlis, Cryst. Growth Des. 10, 3694–3698 (2010)CrossRefGoogle Scholar
  28. 28.
    A.A. Umar, M. Oyama, M.M. Salleh, B.Y. Majlis, Cryst. Growth Des. 9, 2835–2840 (2009)CrossRefGoogle Scholar
  29. 29.
    E. Taer, M. Deraman, I. Talib, S. Hashmi, A.A. Umar, Electrochim. Acta 56, 10217–10222 (2011)CrossRefGoogle Scholar
  30. 30.
    A. Balouch, A.A. Umar, S.T. Tan, S. Nafisah, S.K. Md Saad, M.M. Salleh, M. Oyama, RSC Adv. 3, 19789–19792 (2013)CrossRefGoogle Scholar
  31. 31.
    A. Balouch, A. Ali Umar, A.A. Shah, M. Mat Salleh, M. Oyama, ACS Appl. Mater. Interf. 5, 9843–9849 (2013)CrossRefGoogle Scholar
  32. 32.
    K. Hamamoto, R. Micheletto, M. Oyama, A. Ali Umar, S. Kawai, Y. Kawakami, J. Opt. A Pure Appl. Opt. 8, 268–271 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    H.J. Snaith, A. Abate, J.M. Ball, G.E. Eperon, T. Leijtens, N.K. Noel, S.D. Stranks, J.T.-W. Wang, K. Wojciechowski, W. Zhang, J. Phys. Chem. Lett. 5, 1511–1515 (2014)CrossRefGoogle Scholar
  34. 34.
    A.A. Shah, A.A. Umar, M.M. Salleh, EPJ Photovolt. 7, 70501 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, F.E. CurchodBasile, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, K. NazeeruddinMd, M. Grätzel, Nat. Chem. 6, 242–247 (2014)CrossRefGoogle Scholar
  36. 36.
    A.A. Shah, A.A. Umar, M.M. Salleh, Electrochim. Acta 195, 134–142 (2016)CrossRefGoogle Scholar
  37. 37.
    G. Garcia-Belmonte, A. Munar, E.M. Barea, J. Bisquert, I. Ugarte, R. Pacios, Org. Electron. 9, 847–851 (2008)CrossRefGoogle Scholar
  38. 38.
    W. Duofa, T. Haizheng, Z. Xiujian, J. Meiyan, Z. Tianjin, J. Semicond. 36, 023006 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    K. Manukyan, A. Yeghishyan, D. Moskovskikh, J. Kapaldo, A. Mintairov, A. Mukasyan, J. Mat. Sci. 51, 9123–9130 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    H. Yu, H. Lu, F. Xie, S. Zhou, N. Zhao, Adv. Func. Mater. 26, 1411–1419 (2016)CrossRefGoogle Scholar
  41. 41.
    T.J. Jacobsson, J.-P. Correa-Baena, E. Halvani Anaraki, B. Philippe, S.D. Stranks, M.E.F. Bouduban, W. Tress, K. Schenk, J. Teuscher, J.-E. Moser, H. Rensmo, A. Hagfeldt, J. Am. Chem. Soc. 138, 10331–10343 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Akrajas Ali Umar
    • 1
  • Altaf Yahya Ahmed Al-She’irey
    • 1
  • Mohd Yusri Abd Rahman
    • 1
  • Muhamad Mat Salleh
    • 1
  • Munetaka Oyama
    • 2
  1. 1.Institute of Microengineering and NanoelectronicsUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Nanomaterials Chemistry Laboratory, Department of Materials Chemistry, Graduate School of EngineeringKyoto UniversityKyotoJapan

Personalised recommendations