Applied Physics A

, 124:370 | Cite as

Impact of one-dimensional photonic crystal back reflector in thin-film c-Si solar cells on efficiency

Impact of one-dimensional photonic crystal
Article
  • 13 Downloads

Abstract

In this work, the effect of one-dimensional photonic crystal on optical absorption, which is implemented at the back side of thin-film crystalline silicon (c-Si) solar cells, is extensively discussed. The proposed structure acts as a Bragg reflector which reflects back light to the active layer as well as nanograting which couples the incident light to enhance optical absorption. To understand the optical mechanisms responsible for the enhancement of optical absorption, quantum efficiency and current density for all structures are calculated and the effect of influential parameters, such as grating period is investigated. The results confirm that our proposed structure have a great deal for substantial efficiency enhancement in a broad range from 400 to 1100 nm.

References

  1. 1.
    A. Chutinan, N.P. Kherani, S. Zukotynski, High-efficiency photonic crystal solar cell architecture. Opt. Express 17(11), 8871–8878 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    P. Bermel, C. Luo, L. Zeng, L.C. Kimerling, J.D. Joannopoulos, Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. Opt. Express 15(25), 16986–17000 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    V. Badescu, Physics of Nanostructured Solar Cells (Nova Science Publishers, Hauppauge, 2010)Google Scholar
  4. 4.
    J.N. Munday, H.A. Atwater, Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings. Nano. Lett. 11(6), 2195–2201 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    A. Ouanoughi, A. Hocini, D. Khedrouche, Enhanced absorption of solar cell made of photonic crystal by geometrical design. Front. Optoelectron. 9(1), 93–98 (2016)CrossRefGoogle Scholar
  6. 6.
    A. Ouanoughi, A. Hocini, D. Khedrouche, Study of the absorption in solar cells with 2D photonic crystals. Acta Phys. Polonica A 127(4), 1205–1207 (2015)CrossRefGoogle Scholar
  7. 7.
    A.P. Kulkarni, K.M. Noone, K. Munechika, S.R. Guyer, D.S. Ginger, Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms. Nano. Lett. 10, 1501–1505 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    J.R. Nagel, M.A. Scarpulla, Enhanced absorption in optically thin solar cells by scattering from embedded dielectric nanoparticles. Opt. Express 18(102), A139–A146 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    E. Yablonovitch, G.D. Cody, Intensity enhancement in textured optical sheets for solar cells. IEEE Trans. Electron Devices 29(2), 300–305 (1982)ADSCrossRefGoogle Scholar
  10. 10.
    G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, C. Seassal, Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells. J. Appl. Phys. 108(12), 123102 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Park, E. Drouard, O.E. Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, C. Seassal, Absorption enhancement using photonic crystals for silicon thin film solar cells. Opt. Express 17(16), 1431214321 (2009)ADSGoogle Scholar
  12. 12.
    G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, Ch. Seassal, Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells. J. Appl. Phys. 108, 123102 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    V.E. Ferry, M.A. Verschuuren, H.B.T. Li, E. Verhagen, R.J. Walters, R.E.I. Schropp, H.A. Atwater, A. Polman, Light trapping in ultrathin plasmonic solar cells. Opt. Express 18(S2), A237–A245 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    M.B. Duhring, N.A. Mortensen, O. Sigmund, Plasmonic versus dielectric enhancement in thin-film solar cells. Appl. Phys. Lett. 100, 211914 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    W. Zhang, G. Zheng, L. Jiang, X. Li, Combined front diffraction and back blazed gratings to enhance broad band light harvesting in thin film solar cells. Opt. Commun. 298, 250253 (2013)Google Scholar
  16. 16.
    H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater 9, 205–213 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    S. Das, A. Kundu, H. Saha, S.K. Datta, Enhanced optical absorption and electrical performance of silicon solar cells due to embedding of dielectric nanoparticles and voids in the active absorber region. J. Modern. Opt. 60(7), 556–568 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L.C. Kimerling, B.A. Alamariu, Efficiency enhancement in Si solar cells by textured photonic crystal back reflector. Appl. Phys. Lett. 89(11), 111111 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    L. Zeng, P. Bermel, Y. Yi, B.A. Alamariu, K.A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, L.C. Kimerling, Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector. Appl. Phys. Lett. 93(22), 221105 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    T. Jalali, K. Rauscher, A. Mohammadi, D. Erni, C. Hafner, W. Baechtold, M.Z. Shoushtari, Efficient effective permittivity treatment for the 2D-FDTD simulation of photonic crystals. J. Comput. Theor. Nanosci 4, 644–648 (2007)CrossRefGoogle Scholar
  21. 21.
    J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 2008)MATHGoogle Scholar
  22. 22.
    S. Fan, M.F. Yanik, Z. Wang, S. Sandhu, M.L. Povinelli, Advances in theory of photonic crystals. J. Light. Tech. 24(12), 4493–4501 (2006)CrossRefGoogle Scholar
  23. 23.
    T.F. Krauss, R.M. De La Rue, M. Richard, B. Stuart, Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths. Nature 383, 699–702 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    E.D. Palik, Handbook of Optical Constants of Solids (Academic Press Inc., Orlando, 1985)Google Scholar
  25. 25.
    S. Humphries, Finite-Element Methods for Electromagnetics (CRC Press, Boca Raton, 1997)Google Scholar
  26. 26.
    X. Lu, P. Zhang, Y. Zhao, Z. Wang, Y. Wu, T. Zhou, Ultrathin crystalline silicon solar cells by textured triangular grating. Opt. Quant. Electron. 48(1), 1–13 (2016)CrossRefGoogle Scholar
  27. 27.
    E. Garnett, P. Yang, Light trapping in silicon nanowire solar cells. Nano lett. 10(3), 1082–1087 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    R.E.I. Schropp, M. Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials, and Device Technology (Kluwer Academic, Norwell, 1998)CrossRefGoogle Scholar
  29. 29.
    M. Buffiere, G. Brammertz, S. Oueslati, H. El Anzeery, J. Bekaert, K. Ben Messaoud, C. Koble, S. Khelifi, M. Meuris, J. Poortmans, Spectral currentvoltage analysis of kesterite solar cells. J. Phys. D Appl. Phys. 47(17), 175101 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics DepartmentPersian Gulf UniversityBushehrIran

Personalised recommendations