Applied Physics A

, 124:355 | Cite as

Electric and optical properties of some new functional lower-rim-substituted calixarene derivatives in thin films

  • L. Leontie
  • R. Danac
  • A. Carlescu
  • C. Doroftei
  • G. G. Rusu
  • V. Tiron
  • S. Gurlui
  • O. Susu


Electric (d.c. conduction mechanism, the influence of environmental humidity, thermistor effect) and optical properties of new five substituted calixarene derivatives in thin films have been studied. The films behave as typical n-type polycrystalline semiconductors with activation energy of the electric conduction between 0.26 and 2.36 eV. In the higher temperature range, the electron transport was explained in the frame of the band gap representation model, while at lower temperatures, the Mott’s variable-range hopping conduction model was found as appropriate. In terms of electric conductivity, these compounds are practically insensitive to ambient humidity below 53% RH, their sensitivity increasing greatly with the humidity in the range of 53–98% RH. Study of optical absorption spectra in the photon energy range of 0.71–4.03 eV (UV–Vis–NIR) revealed direct optical band gaps between 2.64 and 3.83 eV. Actual compounds show promising potential for thermistor applications.



This work was supported by the ANCS (National Authority for Scientific Research), Ministry of Economy, Trade and Business Environment, through the National Program Capacities, Project No. 257/28.09.2010 (Acronym CERNESIM).


  1. 1.
    R. Banerjee ed. Functional Supramolecular Materials: From Surfaces to MOFs. (Royal Society of Chemistry, Piccadilly, London, 2017)Google Scholar
  2. 2.
    K. Iniewski ed. Nanoelectronics–Nanowires, Molecular Electronics, and Nanodevices. (McGraw Hill, New York, 2011)Google Scholar
  3. 3.
    T.U. Kampen, Low Molecular Weight Organic Semiconductors. (Wiley, Weinheim, 2010)CrossRefGoogle Scholar
  4. 4.
    S. Ogawa ed. Organic Electronics Materials and Devices. (Springer, Tokyo, 2015)Google Scholar
  5. 5.
    S. Logothetidis ed. Handbook of Flexible Organic Electronics: Materials, Manufacturing and Applications. (Elsevier, Amsterdam, 2015)Google Scholar
  6. 6.
    D.A. Bernards, R.M. Owens, G.G. Malliaras, Organic semiconductors in sensor applications (Springer series in material science). (Springer-Verlag, Berlin, 2008)Google Scholar
  7. 7.
    P. Kumar, Organic Solar Cells: Device Physics, Processing, Degradation, and Prevention. (CRC Press, Boca Raton, 2017)Google Scholar
  8. 8.
    Y. Li ed. Organic Optoelectronic Materials. (Springer, Cham, 2015)Google Scholar
  9. 9.
    S. Schols, Device Architecture and Materials for Organic Light-Emitting Devices: Targeting High Current Densities and Control of the Triplet Concentration. (Springer, Dordrecht, 2011)CrossRefGoogle Scholar
  10. 10.
    A. Facchetti, T.J. Marks eds. Transparent Electronics: From Synthesis to Applications. (Wiley, Chichester, 2010)Google Scholar
  11. 11.
    I. Kymissis, Organic Field Effect Transistors: Theory, Fabrication and Characterization. (Springer, New York, 2009)CrossRefGoogle Scholar
  12. 12.
    A.G. Lebed ed. The physics of organic superconductors and conductors (Springer series in materials science), Vol. 110. (Springer, Berlin, 2008)Google Scholar
  13. 13.
    SSH Sun, NS Sariciftci (Eds.), Organic Photovoltaics: Mechanisms, Materials, and Devices. (CRC Press, Boca Raton, 2005)Google Scholar
  14. 14.
    M. Egginger, S. Bauer, R. Schwodiauer, H. Neugebauer, N.S. Sariciftci, Current versus gate voltage hysteresis in organic field effect transistors. Monatsh. Chem. 140(7), 735–750 (2009)CrossRefGoogle Scholar
  15. 15.
    N. Karl, Charge carrier transport in organic semiconductors. Synthetic Met. 133–134, 649–657 (2003)Google Scholar
  16. 16.
    F.C. Grozema, L.D.A. Siebbeles, Mechanism of charge transport in self-organizing organic materials. Int. Rev. Phys. Chem. 27(1), 87–138 (2008)CrossRefGoogle Scholar
  17. 17.
    J.L. Bredas, J.P. Calbert, D.A. da Silva Filho, J. Cornil, Organic semiconductors: A theoretical characterization of the basic parameters governing charge transport. PNAS 99(9), 5804–5809 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    A. Köhler, H. Bässler, Electronic Processes in Organic Semiconductors—An Introduction. (Wiley, Weinheim, 2015)Google Scholar
  19. 19.
    N. Ueno, S. Kera, Electron spectroscopy of functional organic thin films: Deep insights into valence electronic structure in relation to charge transport property. Prog. Surf. Sci. 83(10–12), 490–557 (2008)Google Scholar
  20. 20.
    V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Olivier, R. Silbey, JJ Brédas. Charge transport in organic semiconductors. Chem. Rev. 107(4), 926–952 (2007)CrossRefGoogle Scholar
  21. 21.
    W.A. Godard, III, D.W. Brenner, S.E. Lyshevski, G.J. Iafrate eds. Handbook of Nanoscience and Engineering and Technology,, 2nd edn. (CRC Press, New York, 2007)Google Scholar
  22. 22.
    S. Okur, M. Kus, F. Ozel, M. Yılmaz, Humidity adsorption kinetics of water soluble calix[4]arene derivatives measured using QCM technique. Sensor Actuat. B-Chem. 145, 93–97 (2010)CrossRefGoogle Scholar
  23. 23.
    P.G. Su, L.G. Lin, W.H. Tzou, Humidity sensing properties of calix[4]arene and functionalized calix[4]arene measured using a quartz-crystal microbalance. Sensor Actuat. B-Chem. 181, 795–801 (2013)CrossRefGoogle Scholar
  24. 24.
    F.L. Dickert, O. Schuster, Supramolecular detection of solvent vapours with calixarenes: mass-sensitive sensors, molecular mechanics and BET studies. Mikrochim. Acta 119, 55–62 (1995)CrossRefGoogle Scholar
  25. 25.
    A.R. Esker, L.H. Zhang, C.E. Olsen, K. No, H. Yu, Static and dynamic properties of calixarene monolayers at the air/water interface. 1. pH effects with p-dioctadecanoylcalix[4]arene. Langmuir 15, 1716–1724 (1999)CrossRefGoogle Scholar
  26. 26.
    V. Şunel, G.I. Rusu, G.G. Rusu, L. Leontie, L.C. Şoldea, Electric characteristics of some derivatives of p-aminobenzoic acid in thin films. Prog. Org. Coat. 26(1), 53–61 (1995)CrossRefGoogle Scholar
  27. 27.
    G.I. Rusu, I. Căplănuş, L. Leontie, A. Airinei, E. Butuc, D. Mardare, I.I. Rusu, Studies on the electronic transport properties of some aromatic polysulfones in thin films. Acta Mater. 49, 553–559 (2001)CrossRefGoogle Scholar
  28. 28.
    R. Danac, L. Leontie, M. Girtan, M. Prelipceanu, A. Graur, A. Carlescu, G.I. Rusu, On the direct current electric conductivity and conduction mechanism of some stable disubstituted 4-(4-pyridyl)pyridiniumylides in thin films. Thin Solid Films 556, 216–222 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    R. Danac, L. Leontie, A. Carlescu, S. Shova, V. Tiron, G.G. Rusu, F. Iacomi, S. Gurlui, O. Susu, G.I. Rusu, Electric conduction mechanism of some heterocyclic compounds, 4,4-bipyridine and indolizine derivatives in thin films. Thin Solid Films 612, 358–368 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    R. Rusu, N. Rosu, C. Dumea, A. Szumna, R. Danac, New triazole appended tert-butyl calix[4]arene conjugates: Synthesis, Hg + 2 binding studies. Tetrahedron 71(19), 2922–2926 (2015)CrossRefGoogle Scholar
  31. 31.
    W. Xu, J.J. Vittal, R.J. Puddephatt, Propargyl calix[4]arenes and their complexes with silver (I) and gold (I). Can. J. Chem. 74, 766–774 (1996)CrossRefGoogle Scholar
  32. 32.
    D. Levy, M. Zayat eds. The Sol–Gel Handbook-Synthesis, Characterization and Applications. (Wiley, Weinheim, 2015)Google Scholar
  33. 33.
    S. Tolansky, Multiple-Beam Interferometry of Surfaces and Films. (Dover, New York, 1970)Google Scholar
  34. 34.
    R. Smith, Semiconductors. (Cambridge University Press, London, 1980)zbMATHGoogle Scholar
  35. 35.
    G.I. Rusu, A. Airinei, M. Rusu, P. Prepeliţă, I. Marin, V. Cozan, I.I. Rusu, On the electronic transport mechanism in thin films of some new poly(azomethine sulfone)s. Acta Mater. 55(2), 433–442 (2007)CrossRefGoogle Scholar
  36. 36.
    C. Doroftei, P.D. Popa, N. Rezlescu, The influence of the heat treatment on the humidity sensitivity of magnesium nanoferrite. J. Optoelectron. Adv. Mater. 12(4), 881–884 (2010)Google Scholar
  37. 37.
    N. Rezlescu, E. Rezlescu, C. Doroftei, P.D. Popa, Study of some Mg-based ferrites as humidity sensors. J. Phys. Conf. Ser. 15(1), 296–299 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    C. Doroftei, P.D. Popa, F. lacomi, Study of the influence of nickel ions substitutes in barium stannates used as humidity resistive sensors. Sensor Actuat. A Phys. 173(1), 24–29 (2012)CrossRefGoogle Scholar
  39. 39.
    J. Pancove, Optical Processes in Semiconductors. (Prentice-Hall, Englewood Cliffs, 1979)Google Scholar
  40. 40.
    T.S. Moss, M. Balkanski eds. Handbook on Semiconductors: Optical Properties of Semiconductors, Vol. 110. (Elsevier, Amsterdam, 1994)Google Scholar
  41. 41.
    B.D. Cullity, R.S. Stock, Elements of X-ray Diffraction, 3rd edn. (Prentice Hall, New Jersey, 2001)Google Scholar
  42. 42.
    A. Benediktovitch, I. Feranchuk, A. Ulyanenkov, Theoretical Concepts of X-ray Nanoscale Analysis. Theory and Applications. (Springer, Berlin, 2014)zbMATHGoogle Scholar
  43. 43.
    L. Leontie, I. Olariu, G.I. Rusu, On the charge transport in some new carbanion disubstituted ylides in thin films. Mater. Chem. Phys. 80(2), 506–511 (2003)CrossRefGoogle Scholar
  44. 44.
    L. Leontie, I. Druta, R. Alupoae, G.I. Rusu, On the electronic transport in some new synthesized high resistivity organic semiconductors in thin films. Mater. Sci. Eng. B 100(3), 252–258 (2003)CrossRefGoogle Scholar
  45. 45.
    F. Gutman, L.E. Lyons, Organic Semiconductors, Part A. (Robert E. Publishing, Malabar, 1981)Google Scholar
  46. 46.
    H. Meier, Organic Semiconductors. (Verlag Chemie, Weinhneim, 1974)Google Scholar
  47. 47.
    G. Baccarani, B. Riccò, G.J. Spandini, Transport properties of polycrystalline silicon films. J. Appl. Phys. 49(11), 5565–5570 (1978)ADSCrossRefGoogle Scholar
  48. 48.
    J.Y.W. Seto, The electric properties of polycrystalline silicon films. J. Appl. Phys. 46(12), 5247–5254 (1975)ADSCrossRefGoogle Scholar
  49. 49.
    G. Horowitz, Organic field-effect transistors. Adv. Mater. 10(5), 365–377 (1998)CrossRefGoogle Scholar
  50. 50.
    L.L. Kazmerski ed. Polycrystalline and Amorphous Thin Films and Devices,. (Academic Press, New York, 1980)Google Scholar
  51. 51.
    L Leontie, R Danac, M Girtan, A Carlescu, AP Rambu, GI Rusu, Electron transport properties of some new 4-tert-butylcalix[4]arene derivatives in thin films. Mater. Chem. Phys. 135(1), 123–129 (2012)CrossRefGoogle Scholar
  52. 52.
    L. Leontie, R. Danac, I. Druta, A. Carlescu, G.I. Rusu, Newly synthesized fused heterocyclic compounds in thin films with semiconductor properties. Synth. Metal 160(11–12), 1273–1279 (2010)CrossRefGoogle Scholar
  53. 53.
    A.W. Dunmore, An improved electric hygrometer. J. Res. Nat. Bur. Stand. 23, 701–714 (1939)CrossRefGoogle Scholar
  54. 54.
    T. Nitta, Z. Terada, Ceramic humidity sensitive resistor device. Nat. Tech. Rept. 22, 885–894 (1976)Google Scholar
  55. 55.
    T. Morimoto, M. Nagao, F. Tokuda, Relation between the amounts of chemisorbed and physisorbed water on metal oxides. J. Phys. Chem. 73, 243–248 (1969)CrossRefGoogle Scholar
  56. 56.
    A. Tripathy, S. Pramanik, J. Cho, J. Santhosh, N.A.A. Osman, Role of morphological structure, doping, and coating of different materials in the sensing characteristics of humidity sensors. Sensor 14, 16343–16422 (2014)CrossRefGoogle Scholar
  57. 57.
    R.J. Hunter, Foundations of Colloid Science, 2nd edn. (Oxford University Press, Oxford, 2001)Google Scholar
  58. 58.
    S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity, 2nd edn. (Academic Press, New York, 1982), p. 121Google Scholar
  59. 59.
    A.W. Adamson, A.P. Gast, Physical Chemistry of Surfaces, 6th edn. (Wiley-Blackwell, New Jersey, 1997), p. 54Google Scholar
  60. 60.
    H.J. Butt, K. Graf, M. Kappl, Physics and Chemistry of Interfaces, 2nd edn. (Wiley-VCH, Weinheim, 2006), pp. 16–19Google Scholar
  61. 61.
    C. Doroftei, Structural, electric and humidity sensitivity properties of Zn-doped LPFO thin films deposited by rf magnetron sputtering. Mater. Chem. Phys. 157, 16–20 (2015)CrossRefGoogle Scholar
  62. 62.
    D. Dragoman, M. Dragoman, Optical Characterization of Solids. (Springer, Berlin Heidelberg, 2002)CrossRefzbMATHGoogle Scholar
  63. 63.
    B.C. Yadav, R.C. Yadav, P.K. Dwivedi, Sol-gel processed (Mg–Zn–Ti) oxide nano-composite film deposited on prism base as an opto-electronic humidity sensor. Sens. Actuators B Chem. 148, 413–419 (2010)CrossRefGoogle Scholar
  64. 64.
    N.F. Mott, E.A. Davis, R.A. Street, States in the gap and recombination in amorphous semiconductors. Phil. Mag. 32(5), 961–996 (1975)ADSCrossRefGoogle Scholar
  65. 65.
    S. Jagtap, S. Rane, S. Gosavi, D. Amalnerkar, Low temperature synthesis and characterization of NTC powder and its ‘lead free’ thick film thermistors. Microelectron. Eng. 87(2), 104–107 (2010)CrossRefGoogle Scholar
  66. 66.
    S. Jagtap, S. Rane, R. Aiyer, S. Gosavi, D. Amalnerkar, Study of microstructure, impedance and dc electrical properties of RuO2-spinel based screen printed ‘green’ NTC thermistor. Curr. Appl. Phys. 10(4), 1156–1163 (2010)ADSCrossRefGoogle Scholar
  67. 67.
    G.M. Gouda, C.L. Nagendra, Structural and electrical properties of mixed oxides of manganese and vanadium: A new semiconductor oxide thermistor material. Sens. Actuators A: Phys. 155(2), 263–271 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • L. Leontie
    • 1
    • 2
  • R. Danac
    • 3
  • A. Carlescu
    • 1
  • C. Doroftei
    • 1
  • G. G. Rusu
    • 2
  • V. Tiron
    • 2
  • S. Gurlui
    • 1
    • 2
  • O. Susu
    • 2
  1. 1.Integrated Center for Studies in Environmental Science for North-East Region (CERNESIM)Alexandru Ioan Cuza University of IasiIasiRomania
  2. 2.Faculty of PhysicsAlexandru Ioan Cuza University of IasiIasiRomania
  3. 3.Faculty of ChemistryAlexandru Ioan Cuza University of IasiIasiRomania

Personalised recommendations