Advertisement

Applied Physics A

, 124:373 | Cite as

Structural and dielectric properties of Al x Zn1−xO (x = 0, 0.02, 0.04, 0.06, 0.08 and 0.10) nanoparticles

  • Neha Sharma
  • Sanjay Kumar
  • Varun Sharma
Article
  • 103 Downloads

Abstract

The chemical precipitation method is followed for the synthesis of Al-doped ZnO nanoparticles (NPs) with varying doping concentrations (0, 0.02, 0.04, 0.06, 0.08, and 0.10 M). A single hexagonal crystalline phase of wurtzite structure has been confirmed for all the samples by X-ray diffraction. Crystalline size and microstrain of the un-doped and doped ZnO (NPs) is determined by the Williamson–Hall (W–H) analysis. The optical properties like band gap and Urbach energy are found out by the UV–visible spectroscopy. The functional bonds are detailed by Fourier transmission infrared spectroscopy. The dielectric properties have been shown by doped sample due to hopping mechanisms as compared to the undoped. The loss factor (tanδ) follows an inverse direction as correspond to frequency due to the presence of dielectric dispersion.

References

  1. 1.
    Y. Tian, S.R. Bakaul, T. Wu, Nanoscale 4, 1529–1540 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    M. Bibes, A. Barthelemy, IEEE Trans. on Electron. Devices 54, 1003–1023 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    R.K. Gupta, K. Ghosh, P.K. Kahol, Mat. Lett. 64, 2022–2024 (2010)CrossRefGoogle Scholar
  4. 4.
    P. Sharma, A. Gupta, F.J. Owens, A. Inoue, K.V. Rao, J. Magn. Magn. Mat. 282, 115–121 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. Von Molnar, M.L. Roukes, D.M. Treger, Science 294, 1488–1495 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    A.A. Bergh, P.J. Dean, Light-Emitting Diodes (Oxford, Clarendon Press, 1976), p. 598Google Scholar
  7. 7.
    X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Nature 409, 66 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Du, S. Guo, Nanoscale 8, 2532–2543 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    S.M. Komirenko, K.W. Kim, V.A. Kochelap, J.M. Zavada, Appl. Phys. Lett. 81, 4616–4618 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, B.H. Hong, Nature 457, 706 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    F. Shangfeng, G. Weimin, L. Jian, C. Yunfa, L. Yun, Effect of Ga3+ doping on the electrical conductivity of nano-sized zinc oxide powders (2006)Google Scholar
  12. 12.
    E. Pál, I. Dékány, Coll. Surf. A Physicochem. Eng. Asp. 318, 141–150 (2008)CrossRefGoogle Scholar
  13. 13.
    C.C. Wang, J.Y. Ying, Chem. Mater. 11, 3113–3120 (1999)CrossRefGoogle Scholar
  14. 14.
    R. Yousefi, J. Beheshtian, S.M. Seyed-Talebi, H.R. Azimi, F. Jamali-Sheini, Chem. Asian J. 13, 194–203 (2018)CrossRefGoogle Scholar
  15. 15.
    A. Kharatzadeh, F. Jamali-Sheini, R. Yousefi, Mater. Des. 107, 47–55 (2016)CrossRefGoogle Scholar
  16. 16.
    R. Sáaedi, Yousefi, J. Appl. Phys. 122, 224505 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, S.Q. Feng, Appl. Phys. Lett. 78, 407–409 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    X. Zhang, Y. Chen, S. Zhang, C. Qiu, Sep. Purif. Tech. 172, 236–241 (2017)CrossRefGoogle Scholar
  19. 19.
    J. Li, J. Xu, Q. Xu, G. Fang, J. Alloys Compd. 542, 151–156 (2012)CrossRefGoogle Scholar
  20. 20.
    A.K. Zak, W.A. Majid, M.E. Abrishami, R. Yousefi, Solid State Sci. 13, 251–256 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    L. Xu, Y.L. Hu, C. Pelligra, C.H. Chen, L. Jin, H. Huang, S.L. Suib, Chem. Mat. 21, 2875–2885 (2009)CrossRefGoogle Scholar
  22. 22.
    R. Mahdavi, S.S.A. Talesh, Adv. Powder Technol. 28, 1418–1425 (2017)CrossRefGoogle Scholar
  23. 23.
    E. Sernelius, K.F. Berggren, Z.C. Jin, I. Hamberg, C.G. Granqvist, Phys. Rev. B 37, 10244 (1988)ADSCrossRefGoogle Scholar
  24. 24.
    J.D. Wang, J.K. Liu, Q. Tong, Y. Lu, X.H. Yang, Ind. Eng. Chem. Res. 53, 2229–2237 (2014)CrossRefGoogle Scholar
  25. 25.
    M. Ahmad, E. Ahmed, Y. Zhang, N.R. Khalid, J. Xu, M. Ullah, Z. Hong, Curr. Appl. Phy. 13, 697–704 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    K. Saravana kumar, K. Ravi chandran, J. Mat. Sci. Mat. Electron. 23, 1462–1469 (2012)CrossRefGoogle Scholar
  27. 27.
    A.A.A. Ahmed, Z.A. Talib, M.Z. bin Hussein, A. Zakaria, J. Solid State Chem. 191, 271–278 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    N. Bouropoulos, G.C. Psarras, N. Moustakas, A. Chrissanthopoulos, S. Baskoutas, Phys. Status Solidi (a) 205, 2033–2037 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    H.W. Lee, S.P. Lau, Y.G. Wang, K.Y. Tse, H.H. Hng, B.K. Tay, J. Cryst. Growth 268, 596–601 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    R.B.H. Tahar, J. Eur. Ceram Soc. 25, 3301–3306 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsArni UniversityKangraIndia
  2. 2.Department of Computer ScienceDesh Bhagat UniversityMandi GobindgarhIndia

Personalised recommendations