Skip to main content
Log in

High thermal conductivity liquid metal pad for heat dissipation in electronic devices

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Novel thermal interface materials using Ag-doped Ga-based liquid metal were proposed for heat dissipation of electronic packaging and precision equipment. On one hand, the viscosity and fluidity of liquid metal was controlled to prevent leakage; on the other hand, the thermal conductivity of the Ga-based liquid metal was increased up to 46 W/mK by incorporating Ag nanoparticles. A series of experiments were performed to evaluate the heat dissipation performance on a CPU of smart-phone. The results demonstrated that the Ag-doped Ga-based liquid metal pad can effectively decrease the CPU temperature and change the heat flow path inside the smart-phone. To understand the heat flow path from CPU to screen through the interface material, heat dissipation mechanism was simulated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. A. Smyrnakis, P. Dimitrakis, P. Normand, E. Gogolides, Microelectron. Eng. 174, 74 (2017)

    Article  Google Scholar 

  2. M. Kwon, J.Y. Lee, W.Y. Won, J.W. Park, J.A. Min, C. Hahn, X.Y. Gu, J.H. Choi, D.J. Kim, Plos One 8, e56936 (2013)

    Article  ADS  Google Scholar 

  3. B.X. Du, J. Li, W. Du, IEEE Trans. Dielectr. Electr. Insul. 20, 947 (2013)

    Article  Google Scholar 

  4. A.L. Moore, L. Shi, Mater. Today 17, 163 (2014)

    Article  Google Scholar 

  5. A. Vlad, N. Singh, C. Galande, P.M. Ajayan, Adv. Energy Mater. 5, 1402115 (2015)

    Article  Google Scholar 

  6. C. Stacey, A.J. Simpkin, R.N. Jarrett, Int. J. Thermophys. 37, 107 (2016)

    Article  ADS  Google Scholar 

  7. X. Lu, G. Xu, J. Appl. Polym. Sci. 65, 2733 (2015)

    Article  Google Scholar 

  8. K. Chano, G.M. Poliskie, J. Fregoso, IEEE Trans. Compon. Packag. Manufac. Technol. 7, 217 (2017)

    Google Scholar 

  9. J.P. Gwinn, R.L. Webb, Microelectron 34, 215 (2003)

    Article  Google Scholar 

  10. J. Due, A.J. Robinson, Appl. Therm. Eng. 50, 455 (2013)

    Article  Google Scholar 

  11. W. Park, Y. Guo, X. Li, J. Hu, L. Liu, X. Ruan, Y.P. Chen, J. Phys. Chem. C 119, 26753 (2015)

    Article  Google Scholar 

  12. J.Y. Zhu, S.Y. Tang, K. Khoshmanesh, K. Ghorbani, ACS Appl. Mater. Interfaces 8, 2173 (2016)

    Article  Google Scholar 

  13. C. Clavero, Nat. Photonics 8, 95 (2014)

    Article  ADS  Google Scholar 

  14. Z. Lin, A. Mcnamara, Y. Liu, K.S. Moon, C.P. Wong, Compos. Sci. Technol. 90, 123 (2014)

    Article  Google Scholar 

  15. S. Subramani, M. Devarajan, IEEE Trans. Device Mater. Reliab. 14, 30 (2014)

    Article  Google Scholar 

  16. A. Hakamy, F.U.A. Shaikh, I.M. Low, J. Mater. Sci. 49, 1684 (2014)

    Article  ADS  Google Scholar 

  17. P. Lv, X.W. Tan, K.H. Yu, R.L. Zheng, J.J. Zheng, W. Wei, Carbon 99, 222 (2016)

    Article  Google Scholar 

  18. M. Obori, S. Nita, A. Miura, J. Shiomi, J. Appl. Phys. 119, 055103 (2016)

    Article  ADS  Google Scholar 

  19. G. Li, Y. Ji, Q. Zhang, B. Tian, H. Ma, J. Heat Transfer 138, 080911 (2016)

    Article  Google Scholar 

  20. P. Anithambigai, S. Shanmugan, D. Mutharasu, T. Zahner, D. Lacey, Microelectron. J. 45, 1726 (2014)

    Article  Google Scholar 

  21. B.F. Donovan, C.J. Szwejkowski, J.C. Duda, R. Cheaito, J.T. Gaskins, C.Y.P. Yang, P.E. Hopkins, Appl. Phys. Lett. 105, 203502 (2014)

    Article  Google Scholar 

  22. C.K. Roy, S. Bhavnani, M.C. Hamilton, R.W. Johnson, R.W. Knight, D.K. Harris, Microelectron. Reliab. 55, 2698 (2015)

    Article  Google Scholar 

  23. X. Sheng, C. Robert, S. Wang, G. Pakeltis, B. Corbett, J.A. Rogers, Laser Photonics Rev. 9, L17 (2015)

    Article  Google Scholar 

  24. A.M. Morishita, C.K. Kitamura, A.T. Ohta, W.A. Shiroma, IEEE Antennas Wirel. Propag. Lett. 12, 1388 (2013)

    Article  ADS  Google Scholar 

  25. N. Han, T.V. Cuong, M. Han, B.D. Ryu, S. Chandramohan, J.B. Park, J.H. Kang, Y.J. Park, K.B. Ko, H.Y. Kim, H.K. Kim, J.H. Ryu, Y.S. Katharria, C.J. Choi, C.H. Hong, Nat. Commun. 4, 1452 (2013)

    Article  Google Scholar 

  26. K.Q. Ma, J. Liu, J. Phys. D: Appl. Phys. 40, 4722 (2007)

    Article  ADS  Google Scholar 

  27. X. Luo, Y. Zhang, C. Zanden, M. Murugesan, Y. Cao, L. Ye, J. Liu, J. Mater. Sci.: Mater. Electron. 25, 2333 (2014)

    Google Scholar 

  28. J. Wang, X.J. Zhao, Y.X. Cai, C. Zhang, W.W. Bao, Energy Convers. Manag. 101, 532 (2015)

    Article  Google Scholar 

  29. Y. Deng, J. Liu, Int. Commun. Heat Mass Transfer 37, 788 (2010)

    Article  Google Scholar 

  30. H. Ge, H. Li, S. Mei, J. Liu, Renew. Sustain. Energy Rev. 21, 331 (2013)

    Article  Google Scholar 

  31. J. Liu, U. Sahaym, I. Dutta, R. Raj, M. Renavikar, R.S. Sidhu, R. Mahajan, J. Mater. Sci. 49, 7844 (2014)

    Article  ADS  Google Scholar 

  32. H.J.C.T. Hennepe, D. Bargeman, M.H.V. Mulder, C.A. Smolders, J. Membr. Sci. 35, 39 (2017)

    Article  Google Scholar 

  33. C.B. Eaker, M.D. Dickey, Appl. Phys. Rev. 3, 149 (2016)

    Article  Google Scholar 

  34. Y. Lin, C. Ladd, S. Wang, A. Martin, J. Genzer, S.A. Khan, M.D. Dickey, Extreme Mech. Lett. 7, 55 (2016)

    Article  Google Scholar 

  35. B.L. Silva, A. Garcia, J.E. Spinelli, Mater. Charact. 114, 30 (2016)

    Article  Google Scholar 

  36. M.E. Trybula, T. Gancarz, W. Gąsior, Fluid Phase Equilib. 421, 39 (2016)

    Article  Google Scholar 

  37. C.Y. Ho, R.W. Powell, P.E. Liley, J. Phys. Chem. Ref. Data 1, 279 (1972)

    Article  ADS  Google Scholar 

  38. H.C. Wang, C.L. Wang, W.B. Su, J. Liu, Y. Sun, H. Peng, L.M. Mei, J. Am. Ceram. Soc. 94, 838 (2011)

    Article  Google Scholar 

  39. Y. Tomizawa, K. Sasaki, A. Kuroda, R. Takeda, Y. Kaito, Appl. Therm. Eng. 98, 320 (2016)

    Article  Google Scholar 

  40. Y.L. Lee, L.C. Chen, Multimedia Syst. 21, 87 (2016)

    Google Scholar 

  41. A. Kylili, P.A. Fokaides, P. Christou, S.A. Kalogirou, Appl. Energy 134, 531 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate financial support from National Science Foundation of China (Grant No. 11204097 and U1530120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Chu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Liu, H., Li, Q. et al. High thermal conductivity liquid metal pad for heat dissipation in electronic devices. Appl. Phys. A 124, 368 (2018). https://doi.org/10.1007/s00339-018-1778-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1778-z

Navigation