Applied Physics A

, 124:354 | Cite as

Response of the monolayer molybdenum disulfide to external circularly and/or elliptically polarized electromagnetic fields

  • Xincheng Zhang
  • Wenhu Liao
  • Hairui Bao
  • Min Zuo


Based on the intersubband transition theorem of the semiconductors, we have theoretically investigated the optical dielectric function, absorption spectrum, and reflectivity of the monolayer molybdenum disulfide (\(\hbox {MoS}_2\)) under the irradiation of a circularly and/or elliptically polarized light. The resonance frequency of the absorption spectrum and reflectivity has been observed to be same with that of the real and imaginary part of the dielectric functions, while the amplitude of the resonance peaks becomes higher with the increase of the amplitude ratio of the polarized light. The monolayer \(\hbox {MoS}_2\) should be more sensitive to the linearly polarized electromagnetic fields, especially to the transversally polarized light. The obtained results may be useful in the design of the spintronic and optoelectronic devices based on \(\hbox {MoS}_2\).



This work was supported by the National Natural Science Foundation of China (Grant Nos. 11664010 and 11264013), the Hunan Provincial Natural Science Foundation of China (Grant Nos. 2017JJ2217 and 12JJ4003), the Scientific Research Fund of Hunan Provincial Education Department of China (Grant No. 14B148), the Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, the Innovation Project for Postgraduate of Hunan Province (Grant No. CX2015B549), and the Research Program of Jishou University (Grant Nos. JGY201763 and Jdy16021).


  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    Y.W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    F. Guinea, M.I. Katsnelson, A.K. Geim, Nat. Phys. 6, 30 (2010)CrossRefGoogle Scholar
  4. 4.
    F.N. Xia, D.B. Farmer, Y.M. Lin, P. Avouris, Nano Lett. 10, 715 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    H.Y. Yu, X.D. Cui, X.D. Xu, W. Yao, Natl. Sci. Rev. 2, 57 (2015)CrossRefGoogle Scholar
  6. 6.
    M.M. Glazov, E.L. Ivchenko, G. Wang, T. Amand, X. Marie, B. Urbaszek, B.L. Liu, Phys. Status Solidi B 252, 2349 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    T. Georgiou, R. Jalil, B.D. Belle, L. Britnell, R.V. Gorbachev, S.V. Morozov, Y.-J. Kim, A. Gholinia, S.J. Haigh, O. Makarovsky, L. Eaves, L.A. Ponomarenko, A.K. Geim, K.S. Novoselov, A. Mishchenko, Nat. Nanotechnol. 8, 100 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    E. Ponomarev, I. Gutirrez-Lezama, N. Ubrig, A.F. Morpurgo, Nano Lett. 15, 8289 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Nano Lett. 10, 1271–1275 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    T. Cao, G. Wang, W.P. Han, H.Q. Ye, C.R. Zhu, J.R. Shi, Q. Niu, P.H. Tan, E.G. Wang, B.L. Liu, J. Feng, Nat. Commun. 3, 887 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7, 699 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    T. Li, G. Galli, J. Phys. Chem. C 111, 16192 (2007)CrossRefGoogle Scholar
  13. 13.
    K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    K. Krzysztof, F.R. Joaquín, Phys. Rev. B 87, 075451 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, ACS Nano 4, 2695 (2010)CrossRefGoogle Scholar
  16. 16.
    J.K. Ellis, M.J. Lucero, G.E. Scuseria, Appl. Phys. Lett. 99, 261908 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    D. Xiao, G.-B. Liu, W.X. Feng, X.D. Xu, W. Yao, Phys. Rev. Lett. 108, 196802 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    P.M. Krstajić, P. Vasilopoulos, M. Tahir, Phys. Rev. B 94, 085413 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    K.F. Mak, K. He, J. Shan, T.F. Heinz, Nat. Nanotechnol. 8, 494 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    G. Kioseoglou, A.T. Hanbicki, M. Currie, A.L. Friedman, Appl. Phys. Lett. 101, 221907 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    J. Klinovaja, D. Loss, Phys. Rev. B 88, 075404 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    H. Zeng, J. Dai, W. Yao, D. Xiao, X. Cui, Nat. Nanotechnol. 7, 490 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    A. Scholz, T. Stauber, J. Schliemann, Phys. Rev. B 88, 035135 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    L. Majidi, H. Rostami, R. Asgari, Phys. Rev. B 89, 045413 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    L. Zhou, J.P. Carbotte, Phys. Rev. B 86, 205425 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    E. Sie, A. Frenzel, Y.-H. Lee, J. Kong, N. Gedik, Phys. Rev. B 92, 125417 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    L.Y. Li, W.H. Wang, H. Liu, X.D. Liu, Q.G. Song, S.W. Ren, J. Phys. Chem. C 113, 8460 (2009)CrossRefGoogle Scholar
  28. 28.
    J. Wang, H. Mabuchi, X.-L. Qi, Phys. Rev. B 88, 195127 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    D. Singh, S. Gupta, Y. Sonvanea, I. Lukačević, J. Mater. Chem. C 4, 6386 (2016)CrossRefGoogle Scholar
  30. 30.
    W.H. Liao, G.H. Zhou, F. Xi, J. Appl. Phys. 104, 126105 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    H. Rostami, R. Asgari, Phys. Rev. B 91, 075433 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    S. Fang, R. Kuate Defo, S.N. Shirodkar, S. Lieu, G.A. Tritsaris, E. Kaxiras, Phys. Rev. B 92, 205108 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    K.F. Mak, K.L. McGill, J. Park, P.L. McEuen, Science 344, 1489 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    H.T. Yuan, X.Q. Wang, B. Lian, H.J. Zhang, X.F. Fang, B. Shen, G. Xu, Y. Xu, S.-C. Zhang, H.Y. Hwang, Y. Cui, Nat. Nanotechnol. 9, 851 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    J.R. Schaibley, H.Y. Yu, G. Clark, P. Rivera, J.S. Ross, K.L. Seyler, W. Yao, X.D. Xu, Nat. Rev. Mater. 1, 16055 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    K.F. Mak, J. Shan, Nat. Photon. 10, 216 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    H. Rostami, A.G. Moghaddam, R. Asgari, Phys. Rev. B 88, 085440 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    A. Kormányos, V. Zólyomi, N.D. Drummond, P. Rakyta, G. Burkard, V.I. Fal\(^{\prime }\)ko, Phys. Rev. B 88, 045416 (2013)Google Scholar
  39. 39.
    G.-B. Liu, W.-Y. Shan, Y.G. Yao, W. Yao, D. Xiao, Phys. Rev. B 88, 085433 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N.D. Drummond, V.I. Fal\(^{\prime }\)ko, 2D Mater. 2, 049501 (2015)Google Scholar
  41. 41.
    Y.L. Li, A. Chernikov, X. Zhang, A. Rigosi, H.M. Hill, A.M. van der Zande, D.A. Chenet, E.M. Shih, J. Hone, T.F. Heinz, Phys. Rev. B 90, 205422 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    L.E. Gloub, S.A. Tarasenko, M.V. Entin, L.I. Magarill, Phys. Rev. B 84, 195408 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    Z. Rukelj, A. S̆trkalj, V. Despoja, Phys. Rev. B 94, 115428 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    Q.J. Liu, N.C. Zhang, F.S. Liu, Z.T. Liu, Chin. Phys. B 23, 047101 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    T. Kitagawa, T. Oka, A. Brataas, L. Fu, E. Demler, Phys. Rev. B 84, 235108 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xincheng Zhang
    • 1
  • Wenhu Liao
    • 1
    • 2
  • Hairui Bao
    • 1
  • Min Zuo
    • 1
  1. 1.College of Physics, Mechanical and Electrical EngineeringJishou UniversityJishouChina
  2. 2.Key Laboratory of Mineral Cleaner Production and Exploit of Green Functional Materials in Hunan ProvinceJishou UniversityJishouChina

Personalised recommendations