Applied Physics A

, 124:374 | Cite as

The design and performance of the nano-carbon based double layers flexible coating for tunable and high-efficiency microwave absorption

  • Danfeng Zhang
  • Zhifeng Hao
  • Yannan Qian
  • Bi Zeng
  • Haiping Zhu
  • Qibai Wu
  • Chengjie Yan
  • Muyu Chen


Nanocarbon-based materials are outstanding microwave absorbers with good dielectric properties. In this study, double-layer silicone resin flexible absorbing coatings, composed of carbon-coated nickel nanoparticles (Ni@C) and carbon nanotubes (CNTs), with low loading and a total thickness of 2 mm, were prepared. The reflection loss (RL) of the double-layer absorbing coatings has measured for frequencies between 2 and 18 GHz using the Arch reflecting testing method. The effects of the thickness and electromagnetic parameters of each layer and of the layer sequence on the absorbing properties were investigated. It is found that the measured bandwidth (RL ≤ − 10 dB) of the optimum double-layer structure in our experiment range achieves 3.70 GHz. The results indicated that the double coating structure composed of different materials has greater synergistic absorption effect on impedance matching than that of same materials with different loading. The maximum RL of S1 (5 wt% CNTs)/S3 (60 wt% Ni@C) double-layer absorbing coating composed of different materials (S1 and S3) was larger than the one achieved using either S1 or S3 alone with the same thickness. This was because double-layer coating provided a suitable matching layer and improve the interfacial impedance. It was also shown that absorbing peak value and frequency position can be adjusted by double-layer coating structure.



This work is supported by the Science and Technology Program of Guangdong Province of China (Grant nos: 2016A020221031, 2017B050504004), and by the Science and Technology Program of Guangzhou City of China (Grant nos: 201604030040).


  1. 1.
    N. Khurram, S.A. Ali, Rakha et al., Optimization of the carbon coating of honeycomb cores for broadband microwave absorption. IEEE T. Electromagn. C. 56, 1061 (2014)CrossRefGoogle Scholar
  2. 2.
    S.C. Zhao, Z. Gao, C.Q. Chen et al., Alternate nonmagnetic and magnetic multilayer nanofilms deposited on carbon nanocoils by atomic layer deposition to tune microwave absorption property. Carbon 98, 196 (2016)CrossRefGoogle Scholar
  3. 3.
    X.Y. Lu, Y.Z. Wu, H.Y. Cai et al., Fe3O4 nanopearl decorated carbon nanotubes stemming from carbon onions with self-cleaning and microwave absorption properties. RSC Adv. 5, 54175 (2015)CrossRefGoogle Scholar
  4. 4.
    J.A. Roberts, T. Imholt, Z. Ye et al., Electromagnetic wave properties of polymer blends of single wall carbon nanotubes using a resonant microwave cavity as a probe. J. Appl. Phys. 95, 4352 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    R. Andrews, D. Jacques, D. Qian et al., Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures. Carbon 39(11), 1681 (2001)CrossRefGoogle Scholar
  6. 6.
    H.Y. Zhang, G.X. Zeng, Y. Ge et al., Electromagnetic characteristic and microwave absorption properties of carbon nanotubes/epoxy composites in the frequency range from 2 to 6 GHz. J. Appl. Phys. 105, 054314 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    R.C. Che, C.Y. Zhi, C.Y. Liang et al., Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite. Appl. Phys. Lett. 88, 033105 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    X.C. Gui, W. Ye, J.Q. Wei et al., Optimization of electromagnetic matching of Fe-filled carbon nanotubes/ferrite composites for microwave absorption. J. Phys. D Appl. Phys. 42, 075002 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    H.L. Xing, Z.F. Liu, L. Lin et al., Excellent microwave absorption properties of Fe ion-doped SnO2/multi-walled carbon nanotube composites. RSC Adv. 6, 41656 (2016)CrossRefGoogle Scholar
  10. 10.
    F. Movassagh-Alangh, A.B. Khiabani, H. Salimkhani, Improvement in magnetic and microwave absorption properties of nano-Fe3O4@ CFs composites using a modified multi-step EPD process. Appl. Surf. Sci. 420, 726 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    H. Wang, H.H. Guo, Y.Y. Dai et al., Optimal electromagnetic-wave absorption by enhanced dipole polarization in Ni/C nanocapsules. Appl. Phys. Lett. 101, 083116 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    N.D. Wu, X.G. Liu, C.Y. Zhao et al., Effects of particle size on the magnetic and microwave absorption properties of carbon-coated nickel nanocapsules. J. Alloys Compd. 656, 628 (2016)CrossRefGoogle Scholar
  13. 13.
    Y.X. Huang, H.Y. Zhang, G.X. Zeng et al., The microwave absorption properties of carbon-encapsulated nickel nanoparticles/silicone resin flexible absorbing material. J. Alloy. Compd. 682, 138 (2016)CrossRefGoogle Scholar
  14. 14.
    T.T. Wang, C.A. Xu, Wang et al., Microwave absorption properties of C/(C@CoFe) hierarchical core-shell spheres synthesized by using colloidal carbon spheres as templates. Ceram. Int. 42, 9178 (2016)CrossRefGoogle Scholar
  15. 15.
    Z.J. Wang, L.N. Wu, J.G. Zhou et al., Chemoselectivity-induced multiple interfaces in MWCNT/Fe3O4@ZnO heterotrimers for whole x-band microwave absorption. Nanoscale 6, 12298 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    M.S. Cao, J. Zhu, J. Yuan et al., Computation design and performance prediction towards a multi-layer microwave absorber. Mater. Des. 23, 557 (2002)CrossRefGoogle Scholar
  17. 17.
    J. Yuan, G. Xiao, M.S. Cao et al., A novel method of computation and optimization for multi-layered radar absorbing coatings using open source software. Mater. Des. 27, 45 (2006)CrossRefGoogle Scholar
  18. 18.
    L.Y. Chen, Y.P. Duan, L.D. Liu et al., Influence of SiO2 fillers on microwave absorption properties of carbonyl iron/carbon black double-layer coatings. Mater. Des. 32, 570 (2011)CrossRefGoogle Scholar
  19. 19.
    Y. Naito, K. Suetake, Application of ferrite to electromagnetic wave absorber and its characteristics. IEEE Trans. Microw. Theory Tech. 19, 65 (1971)ADSCrossRefGoogle Scholar
  20. 20.
    A.N. Yusoff, M.H. Abdullah, A.A. Mansor, S.A.A. Hamid, J. Appl. Phys. 92, 876 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    P. Li, C.G. Wang, W. Wang et al., Electromagnetic wave absorption properties of composites with micro-sized magnetic particles dispersed in amorphous carbon. J. Magn. Magn. Mater. 365, 40 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    Y.C. Qing, W.C. Zhou, F. Luo et al., Microwave-absorbing and mechanical properties of carbonyl-iron/epoxy-silicone resincoatings. J. Magn. Magn. Mater. 321, 25 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    S. Xie, Z.J. Ji, Y. Yang et al., Layered gypsum-based composites with grid structures for S-band electromagnetic wave absorption. Compos. Struct. 180, 513 (2017)CrossRefGoogle Scholar
  24. 24.
    H.L. Lv, Y.H. Guo, G.L. Wu et al., Interface polarization strategy to solve electromagnetic wave interference issue. ACS Appl. Mater. In. 9, 5660 (2017)CrossRefGoogle Scholar
  25. 25.
    L.J. Deng, M.G. Han, Microwave absorbing performances of multiwalled carbon nanotubes composites with negative permeability. Appl. Phys. Lett. 91, 023119 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    J.H. Wu, L.B. Kong, High microwave permittivity of multiwalled carbon nanotube composites. Appl. Phys. Lett. 84, 4956 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    Z. Ye, W.D. Deering, A. Krokhin et al., Microwave absorption by an array of carbon nanotubes, A phenomenological model. Phys. Rev. B 74, 075425–075421 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    M. Vazquez, Prato et al., Carbon nanotubes and microwaves, interactions, responses, and applications. ACS Nano 3, 3819 (2009)CrossRefGoogle Scholar
  29. 29.
    M.A. Farid, A. Bordbar-Khiabani, A. Ahangari-Asl, “Three-phase PANI@ nano-Fe3O4@ CFs heterostructure: Fabrication, characterization and investigation of microwave absorption and EMI shielding of PANI@ nano-Fe3O4@ CFs/epoxy hybrid composite. Compos Sci. Techn. 150, 65 (2017)CrossRefGoogle Scholar
  30. 30.
    X.M. Zhang, G.B. Ji, W. Liu et al., A novel Co/TiO2 nanocomposite derived from a metal-organic framework: synthesis and efficient microwave absorption. J. Mater. Chem. C, 4, 1860 (2016)CrossRefGoogle Scholar
  31. 31.
    X.F. Zhang, Y. Rao, J.J. Guo et al., Multiple-phase carbon-coated FeSn2/Sn nanocomposites for high-frequency microwave absorption. Carbon 96, 972 (2016)CrossRefGoogle Scholar
  32. 32.
    X.G. Liu, J.J. Jiang, D.Y. Geng et al., Dual nonlinear dielectric resonance and strong natural resonance in Ni/ZnO nanocapsules. Appl. Phys. Lett. 94(5), 053119 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    Y.P. Sun, X.G. Liu, C. Feng et al., A facile synthesis of FeNi3@C nanowires for electromagnetic wave absorber. J. Alloy. Compd. 586, 688 (2014)CrossRefGoogle Scholar
  34. 34.
    D.F. Zhang, Z.F. Hao, B. Zeng et al., The theoretical calculation and experiment for microwave electromagnetic property of Ni(C) nanocapsules. Chin. Phys. B 25, 040201 (2016)CrossRefGoogle Scholar
  35. 35.
    W. Liu, Q.W. Shao, G.B. Ji et al., Metal-organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber. Chem. Eng. J. 313, 734 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Danfeng Zhang
    • 1
  • Zhifeng Hao
    • 1
    • 3
  • Yannan Qian
    • 2
  • Bi Zeng
    • 1
  • Haiping Zhu
    • 2
  • Qibai Wu
    • 2
  • Chengjie Yan
    • 2
  • Muyu Chen
    • 2
  1. 1.School of Computer Science and TechnologyGuangdong University of TechnologyGuangzhouChina
  2. 2.School of Materials and EnergyGuangdong University of TechnologyGuangzhouChina
  3. 3.Foshan UniversityFoshanChina

Personalised recommendations