Skip to main content
Log in

Spray pyrolytic deposition of α-MoO3 film and its use in dye-sensitized solar cell

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Thermal decomposition of ammonium para molybdate tetrahydrate precursor has been studied to determine degradation temperatures in air atmosphere. Current work explores the synthesis of α-MoO3 films by an economical spray pyrolysis technique using ammonium para molybdate tetrahydrate precursor in the presence of compressed air. A variety of characterization techniques such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV–visible spectroscopy, Fourier transform infrared, and Raman spectroscopy were carried out, and the studies have confirmed that orthorhombic phase formation of MoO3 takes place with spongy mesh-type structure. The study of electro-catalytic activity of α-MoO3 in titania-based dye-sensitized solar cell is also carried out by cyclic voltammetry, electrochemical impedance spectroscopy, and Tafel curves to evaluate its performance as a counter electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H.H. Kung, Transition Metal Oxides. Surface Chemistry and Catalysis (Elsevier Science, Amsterdam, 1989), p. 45

    Google Scholar 

  2. S.S. Mahajan, S.H. Mujawar, P.S. Shinde, A.I. Inamdar, P.S. Patil, Concentration dependent structural, optical and electrochromic properties of MoO3 thin films. Int. J. Electrochem. Sci. 3, 953–960 (2008)

    Google Scholar 

  3. C.C. Chang, J.Y. Luo, T.K. Chen, K.W. Yeh, T.W. Huang, C.H. Hsu, W.H. Chao, C.T. Ke, P.C. Hsu, M.J. Wang, M.K. Wu, Pulsed laser deposition of (MoO3)1–x(V2O5)x thin films preparation, characterization and gasochromic studies. Thin Solid Films 519, 1552–1557 (2010)

    Article  ADS  Google Scholar 

  4. D. Ban, S. Deng, N. Xu, J. Chen, J. She, F. Liu, Improved field emission characteristics of large-area films of molybdenum trioxide microbelt. J Nanomater. 2010, 1–6 (2010)

    Article  Google Scholar 

  5. R. Sivakumar, R. Gopalakrishnan, M. Jayachandran, C. Sanjeeviraja, Characterization on electron beam evaporated α-MoO3 thin films by the influence of substrate temperature. Curr. Appl. Phys. 7, 51–59 (2007)

    Article  ADS  Google Scholar 

  6. A. Hojabri, F. Hajakbari, A.E. Meibodi, Structural and optical properties of nanocrystalline α-MoO3 thin films prepared at different annealing temperatures. J. Theor. Appl. Phys. 9, 67–73 (2015)

    Article  ADS  Google Scholar 

  7. S. Subbarayudu, V. Madhavi, S. Uthanna, Growth of films by RF magnetron sputtering: studies on the structural, optical, and electrochromic properties. Adv. Mater. Lett. 4, 637–642 (2013)

    Article  Google Scholar 

  8. H.M. Martínez, J. Torres, L.D. López-Carreño, M.E. Rodríguez-García, The effect of substrate temperature on the optical properties of MoO3 nano-crystals prepared using spray pyrolysis. J. Supercond. Nov. Magn. 26, 2485–2488 (2013)

    Article  Google Scholar 

  9. Y.J. Lee, C.W. Park, D.G. Kim, W.T. Nichols, S.T. Oh, Y.D. Kim, (2010) MoO3 thin film synthesis by chemical vapor transport of volatile MoO3(OH)2. J. Ceram. Process. Res. 11, 52–55

    Google Scholar 

  10. E.M. McCarron III, J.C. Calabrese E.M. McCarron, J.C. Calabrese, The growth and single crystal structure of a high pressure phase of molybdenum trioxide: MoO3-II. J. Solid State Chem. 1(1), 121–125 (1991) (91:121–125)

    Article  ADS  Google Scholar 

  11. J.B. De Paiva Jr., W.R. Monteiro, M.A. Zacharias, J.A. Rodrigues, G.G. Cortez, Characterization and catalytic behavior of MoO3/V2O5/Nb2O5 systems in isopropanol decomposition. Braz. J. Chem. Eng. 23, 517–524 (2006)

    Article  Google Scholar 

  12. S.S. Mahajan, S.H. Mujawar, P.S. Shinde, A.I. Inamdar, P.S. Patil, Structural, morphological, optical and electrochromic properties of Ti-doped MoO3 thin films. Sol. Energy Mater. Sol. Cells 93, 183–187 (2009)

    Article  Google Scholar 

  13. U.K. Sen, S. Mitra, electrochemical activity of α-MoO3 nano-belts as lithium-ion battery cathode. RSC Adv. 2, 11123–11131 (2012)

    Article  Google Scholar 

  14. B.M. Sánchez, T. Brousse, C.R. Castro, V.N. Patrick, S. Grant, An investigation of nanostructured thin film MoO3 based supercapacitor electrodes in an aqueous electrolyte. J Electrochim. Acta 91, 253–260 (2013)

    Article  Google Scholar 

  15. H.M. Martínez, J. Torres, M.E. Rodríguez-García, L.L. Carreño, Gas sensing properties of nanostructured MoO3 thin films prepared by spray pyrolysis. Phys. B Condens. Matter 407, 3199–3202 (2012)

    Article  ADS  Google Scholar 

  16. J. Wang, K.C. Rose, C.M. Lieber, Load-independent friction: MoO3 nanocrystal lubricants. J. Phys. Chem. B 103, 8405–8409 (1999)

    Article  Google Scholar 

  17. M. Kovendhan, D.P. Joseph, P. Manimuthu, S. Ganesan, P. Maruthamuthu, S.A. Suthanthiraraj, C. Venkateswaran, R. Mohan, MoO3 film counter electrode for dye sensitized solar cell. AIP Conf. Proc. 1349, 669–670 (2011)

    Article  ADS  Google Scholar 

  18. G.R. Mutta, S.R. Popuri, J.I. Wilson, N.S. Bennett, Sol–gel spin coated well adhered MoO3 thin films as an alternative counter electrode for dye sensitized solar cells. Solid State Sci. 61, 84–88 (2016)

    Article  ADS  Google Scholar 

  19. A.T. Yadav, P.P. Magar, V.S. Kadam, C.V. Jagtap, C.S. Pawar, chemically deposited nickel oxide as counter electrode for dye sensitized solar cell. J. Mater. Sci. Mater. Electron. 27, 12297–12301 (2016)

    Article  Google Scholar 

  20. D. Song, Z. Chen, P. Cui, M. Li, X. Zhao, Y. Li, L. Chu, NH3-treated WO3 as low-cost and efficient counter electrode for dye-sensitized solar cells. Nanoscale Res. Lett. 10, 16 (2015)

    Article  ADS  Google Scholar 

  21. T.N. Murakami, M. Grätzel, Counter electrodes for DSC: application of functional materials as catalysts. Inorg. Chim. Acta 361, 572–580 (2008)

    Article  Google Scholar 

  22. E. Olsen, G. Hagen, S.E. Lindquist, Dissolution of platinum in methox propionitrile containing LiI/I2. Sol. Energy Mater. Sol. Cells 63, 267–273 (2000)

    Article  Google Scholar 

  23. C.F. Lin, Y.C. Chou, J.F. Haung, P.H. Chen, H.C. Han, K.Y. Chiu, Y.O. Su, Dye sensitized solar cells with carbon black as counter electrodes. Jpn. J. Appl. Phys. 55, 03CE01 (2016)

    Article  Google Scholar 

  24. W.J. Lee, E. Ramasamy, D.Y. Lee, J.S. Song, Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes. ACS Appl. Mater. Interfaces 21, 1145–1149 (2009)

    Article  Google Scholar 

  25. X. Meng, C. Yu, B. Lu, J. Yang, J. Qiu, Dual integration system endowing two-dimensional titanium disulfide with enhanced triiodide reduction performance in dye-sensitized solar cells. Nano Energy 22, 59–69 (2016)

    Article  Google Scholar 

  26. C.W. Kung, H.W. Chen, C.Y. Lin, K.C. Huang, R. Vittal, K.C. Ho, CoS acicular nanorod arrays for the counter electrode of an efficient dye-sensitized solar cell. ACS Nano 6, 7016–7025 (2012)

    Article  Google Scholar 

  27. H. Sun, D. Qin, S. Huang, X. Guo, D. Li, Y. Luo, Q. Meng, Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique. Energy Environ. Sci. 4, 2630–2637 (2011)

    Article  Google Scholar 

  28. B. Lei, G.R. Li, X.P. Gao, Morphology dependence of molybdenum disulfide transparent counter electrode in dye-sensitized solar cells. J. Mater. Chem. A 2, 3919–3925 (2014)

    Article  Google Scholar 

  29. C. Yu, X. Meng, X. Song, S. Liang, Q. Dong, G. Wang, C. Hao, X. Yang, T. Ma, P.M. Ajayan, J. Qiu, Graphene-mediated highly-dispersed MoS2 nanosheets with enhanced triiodide reduction activity for dye-sensitized solar cells. Carbon 100, 474–483 (2016)

    Article  Google Scholar 

  30. M. Wu, X. Lin, A. Hagfeldt, T. Ma, Low-cost molybdenum carbide and tungsten carbide counter electrodes for dye-sensitized solar cells. Angew. Chem. Int. Ed. 50, 3520–3524 (2011)

    Article  Google Scholar 

  31. J. Song, G.R. Li, K. Xi, B. Lei, X.P. Gao, R.V. Kumar, Enhancement of diffusion kinetics in porous MoN nanorods-based counter electrode in a dye-sensitized solar cell. J. Mater. Chem. A 2, 10041–10047 (2014)

    Article  Google Scholar 

  32. H. Xu, X. Zhang, C. Zhang, Z. Liu, X. Zhou, S. Pang, X. Chen, S. Dong, Z. Zhang, L. Zhang, P. Han, Nanostructured titanium nitride/PEDOT: PSS composite films as counter electrodes of dye-sensitized solar cells. ACS Appl. Mater. Interfaces 4, 1087–1092 (2012)

    Article  Google Scholar 

  33. X. Xu, D. Huang, K. Cao, M. Wang, S.M. Zakeeruddin, M. Grätzel, Electrochemically reduced graphene oxide multilayer films as efficient counter electrode for dye-sensitized solar cells. Sci. Rep. 1489, 10–38 (2013)

    Google Scholar 

  34. W. Hong, Y. Xu, G. Lu, C. Li, G. Shi, Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem. Commun. 10, 1555–1558 (2008)

    Article  Google Scholar 

  35. I. Ahmad, J.E. McCarthy, A. Baranov, Y.K. Gunko, Development of graphene nano-platelet based counter electrodes for solar cells. Materials 8, 5953–5973 (2015)

    Article  ADS  Google Scholar 

  36. X. Meng, C. Yu, X. Song, Z. Liu, B. Lu, C. Hao, J. Qiu, Rational design and fabrication of sulfur-doped porous graphene with enhanced performance as a counter electrode in dye-sensitized solar cells. J. Mater. Chem. A 5, 2280–2287 (2017)

    Article  Google Scholar 

  37. X. Meng, C. Yu, X. Song, Y. Liu, S. Liang, Z. Liu, C. Hao, J. Qiu, Nitrogen-doped graphene nanoribbons with surface enriched active sites and enhanced performance for dye-sensitized solar cells. Adv. Energy Mater. 5, 11 (2015)

    Article  Google Scholar 

  38. M.B. Rajendra Prasad, H.M. Pathan, Effect of photoanode surface coverage by a sensitizer on the photovoltaic performance of titania based CdS quantum dot sensitized solar cells. Nanotechnology 27, 145402 (2016)

    Article  Google Scholar 

  39. W.M. Shaheen, M.M. Selim, Thermal decompositions of pure and mixed manganese carbonate and ammonium molybdate tetra hydrate. J. Therm. Anal. Calorim. 59, 961–970 (2000)

    Article  Google Scholar 

  40. Y. Zhoulan, L.I. Xinhai, Z. Qinshengchen, C. Shaoyi, Thermal decomposition of ammonium molybdate. Trans. NFsoc 6, 26–28 (1995)

    Google Scholar 

  41. C.S. Oh, Y.O. Park, N. Hasolli, H.G. Kim, S.B. Shin, Y.S. Won, Y.H. Kim, Isothermal decomposition of ammonium molybdate to molybdenum trioxide in a fluidized bed reactor. Korean J. Mater. Res. 25, 10 (2015)

    Google Scholar 

  42. A. Chithambararaj, D.B. Mathi, N.R. Yogamalar, A.C. Bose, Structural evolution and phase transition of [NH4] 6Mo7O24. 4H2O to 2D layered MoO3–x. Mater. Res. Express 2, 055004 (2015)

    Article  ADS  Google Scholar 

  43. Z. Diao, F.L. Kwong, J. Li, J. Lian, K.T. Lai, D.H. Ng, Catalytic activity of biomorphic α-MoO3 in the degradation of methyl violet dye. Environ. Eng. Sci. 29, 860–865 (2012)

    Article  Google Scholar 

  44. N. Mallikarjuna, A. Venkataraman, Synthesis of molybdenum oxide by thermal decomposition of molybdenum acetylacetonate sol–gel. J. Therm. Anal. Calorim. 68, 901–907 (2002)

    Article  Google Scholar 

  45. A. Chithambararaj, A.C. Bose, Investigation on structural, thermal, optical and sensing properties of meta-stable hexagonal MoO3 nanocrystals of one dimensional structure. Beilstein J. Nanotechnol. 2, 585–592 (2011)

    Article  Google Scholar 

  46. T.N. Kovacs, D. Hunyadi, A.L. de Lucena, I.M. Szilagyi, Thermal decomposition of ammonium molybdates. J. Therm. Anal. Calorim. 124, 1013–1021 (2016)

    Article  Google Scholar 

  47. N.K. Perkgoz, M. Bay, Investigation of single-wall MoS2 monolayer flakes grown by chemical vapor deposition. Nano Micro Lett. 8, 70–79 (2016)

    Article  Google Scholar 

  48. D.V. Ahire, S.D. Shinde, G.E. Patil, K.K. Thakur, V.B. Gaikwad, V.G. Wagh, G.H. Jain, Preparation of MoO3 thin films by spray pyrolysis and its gas sensing performance. Int. J. Smart Sens. Intell. Syst. 5, 592–605 (2012)

    Google Scholar 

  49. M. Dieterle, G. Weinberg, G. Mestl, Raman spectroscopy of molybdenum oxides part I. Structural characterization of oxygen defects in MoO3– x by DR UV/VIS, Raman spectroscopy and X-ray diffraction. Phys. Chem. Chem. Phys. 4, 812–821 (2002)

    Article  Google Scholar 

  50. P. Wongkrua, T. Thongtem, S. Thongtem, Synthesis of h-and α-MoO3 by refluxing and calcination combination: phase and morphology transformation, photocatalysis, and photosensitization. J. Nanomater. 2013, 79 (2013)

    Article  Google Scholar 

  51. A. Klinbumrung, T. Thongtem, S. Thongtem, Characterization of orthorhombic α-MoO3 microplates produced by a microwave plasma process. J. Nanomater. 2012, 930763 (2012). https://doi.org/10.1155/2012/930763

    Article  Google Scholar 

  52. T.H. Chiang, H.C. Yeh, The synthesis of α-MoO3 by. Ethylene Glycol. Matlab 6, 4609–4625 (2013)

    Google Scholar 

  53. S. Phadungdhitidhada, P. Mangkorntong, S. Choopun, N. Mangkorntong, Raman scattering and electrical conductivity of nitrogen implanted MoO3 whiskers. Ceram. Int. 34, 1121–1125 (2008)

    Article  Google Scholar 

  54. K. Ajito, L.A. Nagahara, D.A. Tryk, K. Hashimoto, A. Fujishima, Study of the photochromic properties of amorphous MoO3 films using Raman microscopy. J. Phys. Chem. 99, 16383–16388 (1995)

    Article  Google Scholar 

  55. A. Stoyanova, R. Iordanova, M. Mancheva, Y. Dimitriev, Synthesis and structural characterization of MoO3 phases obtained from molybdic acid by addition of HNO3 and H2O2. J. Optoelectron. Adv. Mater. 11, 1127–1131 (2009)

    Google Scholar 

  56. D.E. Diaz-Droguett, R.E. Far, V.M. Fuenzalida, A.L. Cabrera, In situ-Raman studies on thermally induced structural changes of porous MoO3 prepared in vapor phase under He and H2. Mater. Chem. Phys. 134, 631–638 (2012)

    Article  Google Scholar 

  57. J.V. Silveira, J.A. Batista, G.D. Saraiva, J. Mendes Filho, A.G. Souza Filho, S. Hu, X. Wang, Temperature dependent behavior of single walled MoO3 nanotubes: a Raman spectroscopy study. Vib. Spectrosc. 54, 179–183 (2010)

    Article  Google Scholar 

  58. G. Yue, F. Li, F. Tan, G. Li, C. Chen, J. Wu, Nickel sulfide films with significantly enhanced electrochemical performance induced by self-assembly of 4-aminothiophenol and their application in dye-sensitized solar cells. RSC Adv. 4, 64068–6407411 (2014)

    Article  Google Scholar 

  59. C.J. Raj, K. Prabakar, A.D. Savariraj, H.J. Kim, Surface reinforced platinum counter electrode for quantum dots sensitized solar cells. Electrochim. Acta 103, 231–236 (2013)

    Article  Google Scholar 

  60. P.S. Tamboli, M.R. Prasad, V.S. Kadam, R.S. Vhatkar, H.M. Pathan, S.S. Mahajan, α-MoO3-C composite as counter electrode for quantum dot sensitized solar cells. Sol. Energy Mater. Sol. Cells 161, 96–101 (2017)

    Article  Google Scholar 

  61. H.W. Zheng, X. Liang, Y.H. Yu, K. Wang, X.A. Zhang, B.Q. Men, C.L. Diao, C.X. Peng, G.T. Yue, Bi5FeTi3O15 nanofibers/graphene nanocomposites as an effective counter electrode for dye-sensitized solar cells. Nanoscale Res. Lett. 12, 18 (2017)

    Article  ADS  Google Scholar 

  62. Y. Duan, Q. Tang, B. He, R. Li, L. Yu, Transparent nickel selenide alloy counter electrodes for bifacial dye-sensitized solar cells exceeding 10% efficiency. Nanoscale 6, 12601–12608 (2014)

    Article  ADS  Google Scholar 

  63. H. Wang, B. Wang, J. Yu, Y. Hu, C. Xia, J. Zhang, R. Liu, Significant enhancement of power conversion efficiency for dye sensitized solar cell using 1D/3D network nanostructures as photoanodes. Sci. Rep. 5, 9305 (2015)

    Article  ADS  Google Scholar 

  64. J. Essner, Dye sensitized solar cells: optimization of Grätzel solar cells towards plasmonic enhanced photovoltaics. Dissertation, Kansas State University (2011)

Download references

Acknowledgements

Authors are thankful FAST-TRACK, Science and Engineering Research Board (SERB), Department of Science and Technology (DST), New Delhi, for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Smita S. Mahajan or Habib M. Pathan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 798 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamboli, P.S., Jagtap, C.V., Kadam, V.S. et al. Spray pyrolytic deposition of α-MoO3 film and its use in dye-sensitized solar cell. Appl. Phys. A 124, 339 (2018). https://doi.org/10.1007/s00339-018-1763-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1763-6

Navigation