Applied Physics A

, 124:343 | Cite as

Investigations of the electronic and magnetic properties of newly (001) surface LiCrS and LiCrSe half-Heusler compounds

Article

Abstract

We analyzed the electronic and magnetic properties of newly (001) surface LiCrS and LiCrSe half-Heusler compounds with the C1b structure, based on calculations of the first principles. We examine the influences of (001) surface and correlation interactions on the structural properties and electricity and magnetism of the bulk and surface (001) LiCrS and LiCrSe half-Heusler compounds with two ideal terminations named Cr–S and li–li and Cr–Se and li-term terminated (001) surfaces, respectively. We noticed that the half-metallicity assured in the bulk is kept at the Cr–S and Cr–Se terminations, with a total spin polarization equal to 100%, with a wide range in the energy gap, and the magnetic moments calculated for both terminations were found to be equal to 29 µB/f.u., which have a great scientifics in varied application. For the li–li and li-term terminations, we noticed that the half-metallicity is destroy with a total spin polarization equal to 84 and 67%, respectively, with a magnetic moment of 25.5 µB/f.u. The calculated magnetic moment of all terminations was found of all the subsurface is close to that of the bulk system and this makes these compounds of maximum benefit in the pilot applications of spintronic systems.

References

  1. 1.
    R.A. de Groot, F.M. Mueller, P.G. van Engen, K.H.J. Buschow, Phys. Rev. Lett. 50(25), 2024–2027 (1983)ADSCrossRefGoogle Scholar
  2. 2.
    I. Zuti ́, J. Fabian, S.D. Sarma, Spintronics: fundamen- tals and application. Rev. Mod. Phys. 76, 323–410 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    J.D. Boeck, W.V. Roy, J. Das et al., Technology and materials issues in semiconductor-based magneto electronics. Semicond. Sci. Technol. 17(4), 342–354 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    J. Kubler, A.R. Williams, C.B. Sommers, Phys. Rev. B 28, 1745 (1983)ADSCrossRefGoogle Scholar
  5. 5.
    B. Balke, S. Wurmehl, G.H. Fecher, C. Felser, M. Alves, F. Bernard, J. Morais, Appl Phys Lett 90, 172501 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    S. Li, Y. Liu, Z. Ren, X. Zhang, G. Liu, J. Kor. Phys. Soc. 65(7), 1059–1062 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    A.S. lebarski, A. Jezierski, S. Lu¨tkehoff, M. Neumann, Phys Rev B 57(11) (1998)Google Scholar
  8. 8.
    Y. Kudryavtsev, N. Uvarov, V. Iermolenko, I. Glavatskyy, J. Dubowik, Acta Mater. 60, 4780–4786 (2012)CrossRefGoogle Scholar
  9. 9.
    L. Hongzhi, Z. Zhiyong, M. Li, X. Shifeng, L. Heyan, Q. Jingping, L. Yangxian, W. Guangheng, J. Phys. D: Appl. Phys. 40, 7121–7127 (2007)CrossRefGoogle Scholar
  10. 10.
    P. Yan, J. MinZhang, K. Xu, J. Magn. Magn. Mater. 391, 43–48 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    A. Birsan, V. Kuncser, arXiv:1411.7154v1 [cond-mat.mtrl-sci] 26 Nov 2014 (2014)Google Scholar
  12. 12.
    A. Birsan, Curr. Appl. Phys. 14, 1434–1436 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    W. Huang, X. Wang, X. Chen, W. Lu, L. Damewood, C.Y. Fong, Mater. Chem. Phys. 148 (Issues 1–2), 32–38 (2014)Google Scholar
  14. 14.
    Z. X. Wang, G. Cheng, Liu, Materials 10, 1078 (2017).  https://doi.org/10.3390/ma10091078 ADSCrossRefGoogle Scholar
  15. 15.
    Y. J. Jin, J. Lee, Phys. Stat. Sol. (a) 205(8), 1824–1827 (2008)Google Scholar
  16. 16.
    B. Białek, J.Il Lee, M. Kim, Comput. Mater. Sci. 81, 510–516 (2014)CrossRefGoogle Scholar
  17. 17.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Hvasnicka, J. Luitz, Karlheinz Schwarz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Techn. Universit Wien. ISBN: 3-9501031-1-2 (2001)Google Scholar
  18. 18.
    D. Singh, P. Waves, Pseudo-Potentials and the LAPW Method. (Kluwer Academic Publishers, Boston, 1994)CrossRefGoogle Scholar
  19. 19.
    J.P. Perdew, K. Burke, Y. Wang, Phys. Rev. B 54, 16533 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1947)Google Scholar
  22. 22.
    R.J. Soulen, Jr. et al., Science 282, 85 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    L. Pauling, Phys. Rev. 54, 899 (1938)ADSCrossRefGoogle Scholar
  24. 24.
    B. Bialek, J.I. Lee, Semicond. Sci. Technol. 26, 125018 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    S.J. Hashemifar, P. Kratzer, M. Scheffler, Phys. Rev. Lett. 94, 096402 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    W.H. Xie, Y.Q. Xu, B.G. Liu, D.G. Prttifor, Phys. Rev. Lett. 91, 037204 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    R.E. Watson, S. Koide, M. Peter, A.J. Freeman, Phys. Rev. A 139, 167 (1965)ADSCrossRefGoogle Scholar
  28. 28.
    R.E. Watson, A.J. Freeman, S. Koide, Phys. Rev. A 186, 625 (1969)ADSCrossRefGoogle Scholar
  29. 29.
    L.G.D. Dai, X.F. Liu, H.Y. Chen, J.L. Li, YX, Xiao Gang, et al. Phys. Rev. B 77, 014424 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    I. Galanakis, J. Magn. Magn. Mater. 288, 411–417 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronic and communicationAL-Hussain University CollegeKerbalaIraq

Personalised recommendations