Skip to main content
Log in

Light-dependent negative differential resistance in MEH-PPV decorated electrospun TiO2 mat

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Negative Differential Resistance (NDR) was studied in details on the MEH-PPV decorated electrospun TiO2 mat. The TiO2 nanofibrous mat was fabricated by the electrospinning method and the as-fabricated mat was decorated with MEH-PPV through simple chemical bath deposition method. The peak-to-valley ratio of the NDR was 1.85. The observed phenomenon was light dependent, i.e., under light that NDR disappeared completely. We have examined that though in the wavelength region of 650–675 nm the NDR could sustain, for other wavelengths in the visible spectrum, it has been ceased to exist. The NDR behavior was steady and stable over several cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. Liu, S. Ahsan, A.G. Khitun et al., Graphene-based non-Boolean logic circuits. J. Appl. Phys. 114(15), 154310 (2013)

    Article  ADS  Google Scholar 

  2. K.-J. Gan, C.-S. Tsai, Y.-W. Chen et al., Voltage-controlled multiple-valued logic design using negative differential resistance devices. Solid State Electron. 54(12), 1637–1640 (2010)

    Article  ADS  Google Scholar 

  3. S. Kumar, Z. Wang, N. Davila et al., Physical origins of current and temperature controlled negative differential resistances in NbO2”. Nat. Commun. 8(1), 658 (2017)

    Article  ADS  Google Scholar 

  4. J.-Y. Cheng, B.L. Fisher, N.P. Guisinger et al., Atomically manufactured nickel–silicon quantum dots displaying robust resonant tunneling and negative differential resistance. npj Quant. Mater. 2(1), 25 (2017)

    Article  Google Scholar 

  5. X. Liu, M.T. Mayer, D. Wang, Negative differential resistance and resistive switching behaviors in Cu2S nanowire devices. Appl. Phys. Lett. 96(22), 223103 (2010)

    Article  ADS  Google Scholar 

  6. C. Guo, C. Xia, T. Wang et al., Carbon-doping-induced negative differential resistance in armchair phosphorene nanoribbons. J. Semicond. 38(3), 033005 (2017)

    Article  ADS  Google Scholar 

  7. S. Chang, L. Zhao, Y. Lv et al., Negative differential resistance in graphene nanoribbon superlattice field-effect transistors. IET Micro Nano Lett. 10(8), 400–403 (2015)

    Article  Google Scholar 

  8. W. Pfaff, B.J. Hensen, H. Bernien et al., Unconditional quantum teleportation between distant solid-state quantum bits. Science 345(6196), 532–535 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. P. Chakraborty, S. Pillet, E.-E. Bendeif et al., Light-induced bistability in the 2 D coordination network {[Fe(bbtr)3][BF4]2}∞: wavelength-selective addressing of molecular spin states. Chem. A Eur. J. 19(34), 11418–11428 (2013)

    Article  Google Scholar 

  10. H. Xie, M.J. He, X.Y. Deng et al., Design of poly(l-lactide)-poly(ethylene glycol) copolymer with light-induced shape-memory effect triggered by pendant anthracene groups. ACS Appl. Mater. Interfaces 13(8), 9431 (2016)

    Article  Google Scholar 

  11. W.-J. Yoon, S.-Y. Chung, P.R. Berger et al., Room-temperature negative differential resistance in polymer tunnel diodes using a thin oxide layer and demonstration of threshold logic. Appl. Phys. Lett. 87(20), 203506 (2005)

    Article  ADS  Google Scholar 

  12. K.W. Lee, C.W. Jang, D.H. Shin et al., Light-induced negative differential resistance in graphene/Si-quantum-dot tunneling diodes. Sci. Rep. 6, 30669 (2016)

    Article  ADS  Google Scholar 

  13. I.-W. Lyo, P. Avouris, Negative Differential resistance on the atomic scale: implications for atomic scale devices. Science 245(4924), 1369–1371 (1989)

    Article  ADS  Google Scholar 

  14. A.M. Eppler, I.M. Ballard, J. Nelson, Charge transport in porous nanocrystalline titanium dioxide. Phys. E 14(1–2), 197–202 (2002)

    Article  Google Scholar 

  15. C. Dette, M.A. Pérez-Osorio, C.S. Kley et al., TiO2 anatase with a bandgap in the visible region. Nano Lett. 14(11), 6533–6538 (2014)

    Article  ADS  Google Scholar 

  16. H.-W. Chen, T.-Y. Huang, T.-H. Chang et al., Efficiency enhancement of hybrid perovskite solar cells with MEH-PPV hole-transporting layers. Sci. Rep. 6, 34319 (2016)

    Article  ADS  Google Scholar 

  17. J. Nowotny, Titanium dioxide-based semiconductors for solar-driven environmentally friendly applications: impact of point defects on performance. Energy Environ. Sci. 1(5), 565–572 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by SERB (DST) (Grant no. ECR/2015/000208). K.M. is thankful to SERB (SB/FTP/PS-167/2013) and BRNS (34/14/26/2014-BRNS/1749) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kallol Mohanta or Sudip K. Batabyal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3236 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanta, K., Karthega, M. & Batabyal, S.K. Light-dependent negative differential resistance in MEH-PPV decorated electrospun TiO2 mat. Appl. Phys. A 124, 349 (2018). https://doi.org/10.1007/s00339-018-1758-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1758-3

Navigation