Skip to main content
Log in

Design of miniaturized, low-loss and flexible multi-band metamaterial for microwave application

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, a novel miniaturized low-loss metamaterial unit cell structure, called circular spiral split ring resonator (CSSRR), operating at microwave frequency regime is introduced. The miniaturization is realized with inductive loading by increasing the length of metallic spiral strips inside the structure. Due to inductive loading, the effective inductance-to-capacitance ratio, L/C, is increased as a consequence, low-loss behaviour is also obtained along with the compactness. Despite of miniaturization and low loss, the introduced structure exhibits multi-resonance property with two distinct ε-negative (ENG) regions and one µ-negative (MNG) region over the X, Ku, and K microwave frequency bands. Particularly, the low-loss behaviour is observed for all three resonance frequencies of the proposed structure. Furthermore, the presented metamaterial is flexible and provides stable characteristics to bending as well as twisting effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. I.B. Vendik, O.G. Vendik, Tech. Phys. 58, 1 (2013)

    Article  Google Scholar 

  2. D. Schurig, J.J. Mock, D.R. Smith, Appl. Phy. Lett. 88, 041109 (2006)

    Article  ADS  Google Scholar 

  3. F. Bilotti, A. Toscano, L. Vegni, IEEE Trans. Antennas Propag. 55, 2258 (2007)

    Article  ADS  Google Scholar 

  4. W. Withayachumnankul, C. Fumeaux, D. Abbott, Opt. Express 18, 25912 (2010)

    Article  ADS  Google Scholar 

  5. A. Dhouibi, S.N. Burokur, A.D. Lustrac, A. Priou, Microwave Opt. Tech. Lett. 54, 2287 (2012)

    Article  Google Scholar 

  6. H.-X. Xu, G.-M. Wang, Q. Liu, J.F. Wang, J.Q. Gong, Appl. Phys. A 107, 261 (2012)

    Article  ADS  Google Scholar 

  7. A. Sarkhel, D. Mitra, S. Paul, S.R.B. Chaudhuri, Microwave Opt. Tech. Lett. 57, 1152 (2015)

    Article  Google Scholar 

  8. M.R.I. Faruque, M.J. Hossain, S.S. Islam, M.F.B. Jamlos, M.T. Islam, Appl. Phys. A 123, 310 (2017)

    Article  ADS  Google Scholar 

  9. B.-I. Popa, S.A. Cummer, Phys. Rev. E 73, 016617 (2006)

    Article  ADS  Google Scholar 

  10. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Science 314, 977 (2006)

    Article  ADS  Google Scholar 

  11. D. Huang, Y. Urzhumov, D.R. Smith, K.H. Teo, J. Zhang, J. Appl. Phys. 111, 064902 (2012)

    Article  ADS  Google Scholar 

  12. J. Zhou, T. Koschny, C.M. Soukoulis, Opt. Express 16, 11147 (2008)

    Article  ADS  Google Scholar 

  13. D. Güney, T. Koschny, C.M. Soukoulis, Phys. Rev. B 80, 125129 (2009)

    Article  ADS  Google Scholar 

  14. X. Zhou, Y. Liu, X. Zhao, Appl. Phys. A 98, 643 (2010)

    Article  ADS  Google Scholar 

  15. B.-I. Popa, S.A. Cummer, Phys. Rev. Lett. 100, 207401 (2008)

    Article  ADS  Google Scholar 

  16. L. Zhu, F.-Y. Meng, L. Dong, J.-H. Fu, Q. Wu, IEEE Trans. Terahertz Scien. Tech. 3, 805 (2013)

    Article  ADS  Google Scholar 

  17. L. Zhu, F. Meng, F. Zhang, J. Fu, Q. Wu, X. Ding, J.L.-W. Li, Progress Electromag. Res. 137, 239 (2013)

    Article  Google Scholar 

  18. C. Zhu, J.-J. Ma, L. Li, C.-H. Liang, Electron. Lett. 47, 12 (2011)

    Article  Google Scholar 

  19. C. Sabah, IEEE J. Selec. Top. Quantum Electron. 19, 8500808 (2013)

    Article  Google Scholar 

  20. P.M. Ragi, K.S. Umadevi, P. Nees, J. Jose, M.V. Keerthy, V.P. Joseph, Microwave Opt. Tech. Lett. 54, 1415 (2012)

    Article  Google Scholar 

  21. Z.H. Jiang, D.E. Brocker, P.E. Sieber, D.H. Werner, IEEE Trans. Antennas Propag. 62, 4021 (2014)

    Article  ADS  Google Scholar 

  22. S.I. Kwak, D.-U. Sim, J.H. Kwon, Y.J. Yoon, IEEE Trans. Electromag. Compat. 59, 297 (2017)

    Article  Google Scholar 

  23. L. Li, H. Liu, H. Zhang, W. Xue, IEEE Trans. Ind. Electron. 65, 3230 (2018)

    Article  Google Scholar 

  24. J. Zhou, T. Koschny, M. Kafesaki, C.M. Soukoulis, Photon. Nanostruct. Fundam. Appl. 6, 96 (2008)

    Article  ADS  Google Scholar 

  25. HFSS ver. 15 (Ansoft Corporation, Pittsburgh, PA, USA)

  26. D.R. Smith, D.C. Vier, T. Koschny, C.M. Soukoulis, Phys. Rev. E 71, 036617 (2005)

    Article  ADS  Google Scholar 

  27. E. Ekmekci, G.T. Sayan, Electron. Lett. 46, 324 (2010)

    Article  Google Scholar 

  28. O. Yurduseven, A.E. Yilmaz, G.T. Sayan, IEEE Antennas Wirel. Propag. Lett. 10, 701 (2011)

    Article  ADS  Google Scholar 

  29. D.K. Ghodgaonkar, V.V. Varadan, V.K. Varadan, IEEE Trans. Instrum. Meas. 39, 387 (1990)

    Article  Google Scholar 

  30. R.W. Ziolkowski, IEEE Trans. Antennas Propag. 51, 1516 (2003)

    Article  ADS  Google Scholar 

  31. A.K. Iyer, G.V. Eleftheriades, IEEE Trans. Antennas Propag. 55, 2746 (2007)

    Article  ADS  Google Scholar 

  32. U.C. Hasar, J.J. Barroso, J. Infrared Milli Terahertz Waves 33, 218 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

For research support, T. Shaw acknowledges the Visvesvaraya PhD scheme for Electronics & IT research fellowship award and D. Mitra acknowledges the Visvesvaraya Young Faculty research fellowship award, under MeitY, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarakeswar Shaw.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaw, T., Mitra, D. Design of miniaturized, low-loss and flexible multi-band metamaterial for microwave application. Appl. Phys. A 124, 348 (2018). https://doi.org/10.1007/s00339-018-1755-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1755-6

Navigation