Applied Physics A

, 124:335 | Cite as

Bias magnetic field and test period dependences of direct and converse magnetoelectric hysteresis of tri-layered magnetoelectric composite

  • Yun Zhou
  • Xiao-Hong Li
  • Jian-Feng Wang
  • Hao-Miao Zhou
  • Dan Cao
  • Zhi-Wei Jiao
  • Long Xu
  • Qi-Hao Li


The direct and converse magnetoelectric hysteresis behavior for a tri-layered composite has been comparatively investigated and significant similarities have been observed. The results show that both the direct and converse magnetoelectric hysteresis is deeply affected by the bias magnetic field and test period. The test time hysteresis caused by a fast varying bias magnetic field can be reduced by prolonging the test period. The observed coercive field, remanence, and ratio of remanence of the direct and converse magnetoelectric effects with the test period obey an exponential decay law. A hysteretic nonlinear magnetoelectric theoretical model for the symmetrical tri-layered structure has been proposed based on a nonlinear constitutive model and pinning effect. The numerical calculation shows that the theoretical results are in good agreement with the experimental results. These findings not only provide insight into the examination and practical applications of magnetoelectric materials, but also propose a theoretical frame for studying the hysteretic characteristics of the magnetoelectric effect.



The original work and this revision is supported by the National Natural Science Foundation of China (NSFC nos. 11547048, 11472259, 51771175, 11504356), Zhejiang Provincial Natural Science Foundation of China (nos. LR13A020002, LY16A040006) and the National Key Research and Development Program of China (no. 2017YFF0204701).

Compliance with ethical standards

Conflict of interest

This study was funded by the National Natural Science Foundation of China (nos. 11547048, 11472259, 51771175, 11504356), Zhejiang Provincial Natural Science Foundation of China (nos. LR13A020002, LY16A040006) and the National Key Research and Development Program of China (no. 2017YFF0204701).The authors declare that they have no conflict of interest. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.


  1. 1.
    J.P. Zhou, Y. Yang, G.B. Zhang, J.H. Peng, P. Liu, Symmetric relationships between direct and converse magnetoelectric effects in laminate composites. Compos. Struct. 155, 107–117 (2016)CrossRefGoogle Scholar
  2. 2.
    S. Chul Yang, K.H. Cho, C.S. Park, S. Priya, Self-biased converse magnetoelectric effect. Appl. Phys. Lett. 99, 202904 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    J.P. Zhou, Y.J. Ma, G.B. Zhang, X.M. Chen, A uniform model for direct and converse magnetoelectric effect in laminated composite. Appl. Phys. Lett. 104, 202904 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    F. Xue, J. Hu, S.X. Wang, J. He, In-plane longitudinal converse magnetoelectric effect in laminated composites: aiming at sensing wide range electric field. Appl. Phys. Lett. 106, 082901 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Zhou, Y.X. Ye, S.H. Zhou, Z.J. Feng, S.J. Yu, M.G. Chen, J.C. Zhang, Frequency and field dependence of magnetoelectric coupling in multiferroic particulate composites. Eur. Phys. J. Appl. Phys. 56, 30201 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    U. Laletin, G. Sreenivasulu, V.M. Petrov, T. Garg, A.R. Kulkarni, N. Venkataramani, G. Srinivasan, Hysteresis and remanence in magnetoelectric effects in functionally graded magnetostrictive-piezoelectric layered composites. Phys. Rev. B 85, 104404 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    N.O. Urs, I. Teliban, A. Piorra, R. Knöchel, E. Quandt, J. Mccord, Origin of hysteretic magnetoelastic behavior in magnetoelectric 2–2 composites. Appl. Phys. Lett. 105(20), 202406 (2014)CrossRefGoogle Scholar
  8. 8.
    Y. Yan, Y. Zhou, S. Priya, Giant self-biased magnetoelectric coupling in co-fired textured layered composites. Appl. Phys. Lett. 102, 052907 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    S.K. Mandal, G. Sreenivasulu, V.M. Petrov et al., Flexural deformation in a compositionally stepped ferrite and magnetoelectric effects in a composite with piezoelectrics. Appl. Phys. Lett. 96, 192502 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    C. Lu, P. Li, Y. Wen, A. Yang, W. He, J. Zhang, M. Yu, Investigation of magnetostrictive/piezoelectric multilayer composite with a giant zero-biased magnetoelectric effect. Appl. Phys. A 113, 413–421 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    L. Cai-Jiang, L. Ping, W. Yu-Mei, Y. Ai-Chao, Y. Chao, W. De-Cai, Z. Ji-Tao, Self-biased magnetoelectric responses in magnetostrictive/piezoelectric composites with different high-permeability alloys. Chin. Phys. B 23, 117503 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    J. Zhang, Y. Gao, Effects of hysteresis and temperature on magnetoelectric effect in giant magnetostrictive/piezoelectric composites. Int. J. Solids. Struct. 69, 291–304 (2015)CrossRefGoogle Scholar
  13. 13.
    Y. Zhou, H.M. Zhou, Y.X. Ye, Z.W. Jiao, Bias magnetic field and test period dependences of magnetoelectric hysteresis of particulate multiferroic composites. Appl. Phys. A 122, 1–5 (2016)Google Scholar
  14. 14.
    Y. Zhou, Y. Ye, J. Wang, J. Zhang, Z. Jiao, J. Zhang, Magnetoelectric effect in lead-free sandwich film composed of Co-ferrite and (K0.5Na0.5)NbO3-based ferroelectric. Mater. Lett. 131, 158–160 (2014)CrossRefGoogle Scholar
  15. 15.
    Y. Wang, F. Wang, S.W. Or, H.L.W. Chan, X. Zhao, H. Luo, Giant sharp converse magnetoelectric effect from the combination of a piezoelectric transformer with a piezoelectric/magnetostrictive laminated composite. Appl. Phys. Lett. 93, 113503 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    P. Sardarian, H. Naffakh-Moosavy, S.S.S. Afghahi, A newly-designed magnetic/dielectric [Fe3O4/BaTiO3@MWCNT] nanocomposite system for modern electromagnetic absorption applications. J. Magn. Magn. Mater. 441, 257–263 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    J.N. Ma, C.Z. Xin, J. Ma, Y.H. Lin, C.W. Nan, A cost-effective self-biased magnetoelectric effect in SrFe12O19/Metglas/Pb (Zr,Ti)O3 laminates. J. Phys. D: Appl. Phys. 49, 405002 (2016)CrossRefGoogle Scholar
  18. 18.
    M. Kumari, C. Prakash, R. Chatterjee, Room temperature large self-biased magnetoelectric effect in non lead based piezoelectric and magnetostrictive (0–3) particulate composite system. J. Magn. Magn. Mater. 429, 60–64 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Zhou, D.J. Apo, S. Priya, Dual-phase self-biased magnetoelectric energy harvester. Appl. Phys. Lett. 103(19), 192909 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Yang, Y.J. Ma, J.P. Zhou, G.B. Zhang, J.H. Peng, Origin of large phase shift and magnetoelectric resonance in magnetoelectric laminate composite. IEEE T.Magn. 52, 1–4 (2016)Google Scholar
  21. 21.
    A. Srinivas, R.V. Krishnaiah, T. Karthik, P. Suresh, S. Asthana, S.V. Kamat, Observation of direct and indirect magnetoelectricity in lead free ferroelectric (Na0.5Bi0.5TiO3)-magnetostrictive (CoFe2O4) particulate composite. Appl. Phys. Lett. 101, 082902 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    H.M. Zhou, M.H. Li, X.H. Li, D.G. Zhang, An analytical and explicit multi-field coupled nonlinear constitutive model for Terfenol-D giant magnetostrictive material. Smart. Mater. Struct. 25, 085036 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    D. Jiles, D. Atherton, Ferromagnetic hysteresis. IEEE T. Magn. 19, 2183–2185 (1983)ADSCrossRefGoogle Scholar
  24. 24.
    D.C. Jiles, D.L. Atherton, Theory of ferromagnetic hysteresis. J. Appl. Phys. 55, 2115–2120 (1984)ADSCrossRefGoogle Scholar
  25. 25.
    H.M. Zhou, X.L. Cui, Static magnetoelectric coupling of magnetoelectric laminated composites under combined temperature and stress loadings. J. Appl. Phys. 115, 083905 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of ScienceChina Jiliang UniversityHangzhouChina
  2. 2.College of Information EngineeringChina Jiliang UniversityHangzhouChina

Personalised recommendations