Applied Physics A

, 124:331 | Cite as

An ultra-thin compact polarization-independent hexa-band metamaterial absorber

  • Praneeth Munaga
  • Somak Bhattacharyya
  • Saptarshi Ghosh
  • Kumar Vaibhav Srivastava


In this paper, an ultra-thin compact hexa-band metamaterial absorber has been presented using single layer of dielectric. The proposed design is polarization independent in nature owing to its fourfold symmetry and exhibits high angular stability up to 60° angles of incidences for both TE and TM polarizations. The structure is ultrathin in nature with 2 mm thickness, which corresponds to λ/11.4 (λ is the operating wavelength with respect to the highest frequency of absorption). Six distinct absorption frequencies are obtained from the design, which can be distributed among three regions, namely lower band, middle band and higher band; each region consists of two closely spaced frequencies. Thereafter, the dimensions of the proposed structure are adjusted in such a way that bandwidth enhancement occurs at each region separately. Simultaneous bandwidth enhancements at middle and higher bands have also been achieved by proper optimization of the geometrical parameters. The structure with simultaneous bandwidth enhancements at X- and Ku-bands is later fabricated and the experimental absorptivity response is in agreement with the simulated one.


  1. 1.
    D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184–4187 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    N. Fang, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens. Science 38(5721), 534–537 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    S.A. Cummer, B.I. Popa, D. Schurig, D.R. Smith, J.B. Pendry, Full wave simulations of electromagnetic cloaking structures. Phys. Rev. E 74, 036621 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    K. Alici, E. Ozbay, Radiation properties of a split ring resonator and monopole composites. Phys. Stat. Sol. (B) 244(4), 1192–1196 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    M. Gill, J. Bonache, F. Martin, Metamaterial filters: a review. Metamaterials 2(4), 186–197 (2008)Google Scholar
  6. 6.
    N. Wang, X. Dong, W. Zhou, C. He, W. Jiang, S. Hu, Low-frequency metamaterial absorber with small-size unit cell based on corrugated surface. AIP Adv. 6(2), 025205 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    H. Tao, N. Landy, C.M. Bingham, X. Zhang, R.D. Averit, W.J. Padilla, A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Express 16(10), 7181–7188 (2008)CrossRefGoogle Scholar
  9. 9.
    N. Zhang, P. Zhou, D. Cheng, X. Weng, J. Xie, L. Deng, Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacer layers. Opt. Lett. 38(7), 1125–1127 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    H. Li, L. Hua Yang, B. Zhou, X. Peng Shen, Q. Cheng, T.J. Cui, Ultrathin multiband gigahertz metamaterial absorbers. J. Appl. Phys. 110(1), 014909 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    S. Bhattacharyya, H. Baradiya, K.V. Srivastava, An ultra thin metamaterial absorber using electric field driven LC resonator with meander lines. in IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, Chicago, 8–13 July, p. 1 (2012)Google Scholar
  12. 12.
    S. Bhattacharyya, K.V. Srivastava, An ultra thin electric field driven lc resonator structure as metamaterial absorbers for dual band applications. in URSI International Symposium on Electromagnetic Theory (EMTS) 2013, Hiroshima, Japan, 20–24 May, p. 722 (2013)Google Scholar
  13. 13.
    X. Shen, T.J. Cui, J. Zhao, H.F. Ma, W.X. Jiang, H. Li, Polarization-independent wide-angle triple-band metamaterial absorber. Opt. Express 19(10), 9401–9407 (2011)CrossRefGoogle Scholar
  14. 14.
    G. Dayal, S.A. Ramakrishna, Design of multi-band metamaterial perfect absorbers with stacked metal–dielectric disks. J. Opt. 15(5), 055106 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    S. Bhattacharyya, S. Ghosh, K.V. Srivastava, Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band. J. Appl. Phys. 114(9), 094514 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    S. Bhattacharyya, K.V. Srivastava, Ultra thin metamaterial absorbers using electric field driven LC (ELC) resonator structure. in Progress In Electromagnetics Research Symposium, Kuala Lumpur, Malaysia, 27–30 March, pp. 314–317 (2012)Google Scholar
  17. 17.
    S. Bhattacharyya, K.V. .Srivastava, Triple band polarization-independent ultra-thin metamaterial absorber using ELC resonator. J. Appl. Phys. 115(6), 064508 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    S. Ghosh, S. Bhattacharyya, Y. Kaiprath, K.V. Srivastava, Bandwidth-enhanced polarization insensitive microwave metamaterial absorber and its equivalent circuit model. J. Appl. Phys. 115(10), 104503 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    S. Ghosh, S. Bhattacharyya, K.V. Srivastava, Bandwidth-enhancement of an ultra-thin polarization insensitive metamaterial absorber. Microw. Opt. Technol. Lett. 56(2), 350–355 (2014)CrossRefGoogle Scholar
  20. 20.
    H. Tao, C.M. Bingham, D. Pilon, K. Fan, A.C. Strikwerda, D. Shrekenhamer, W.J. Padilla, X. Zhang, R.D. Averitt, A dual-band terahertz metamaterial absorber. J. Phys. D Appl. Phys. 43, 225102 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    S. Bhattacharyya, S. Ghosh, K.V. Srivastava, Equivalent circuit modeling of an ultra-thin polarization-independent triple band metamaterial absorber. AIP Adv. 4(9), 097127 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    S. Bhattacharyya, S. Ghosh, D. Chaurasiya, K.V. Srivastava, Bandwidth-enhanced dual-band dual-layer polarization-insensitive ultra-thin metamaterial absorber. Springer Appl. Phys. A 118(1), 207–215 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    S. Bhattacharyya, K.V. Srivastava, Dual layer polarization insensitive dual band metamaterial absorber with enhanced bandwidths. in IEEE Asia Pacific Microwave Conference (APMC) 2014, Sendai, Japan, 4–7 November, pp. 816–818 (2014)Google Scholar
  24. 24.
    D. Chaurasiya, S. Ghosh, S. Bhattacharyya, A. Bhattacharya, K.V. Srivastava, A compact multi-band polarization-insensitive metamaterial absorber. IET Microw. Antennas Propag. 10(1), 94–101 (2016)CrossRefGoogle Scholar
  25. 25.
    N. Wang, J. Tong, W. Zhou, W. Jiang, J. Li, X. Dong, S. Hu, Novel quadruple-band microwave metamaterial absorber. IEEE Photonics J. 7(1), 5500506 (2015)Google Scholar
  26. 26.
    A. Bhattacharya, S. Bhattacharyya, S. Ghosh, D. Chaurasiya, K.V. Srivastava, An ultra-thin penta-band polarization-insensitive compact metamaterial absorber for airborne radar application. Microw. Opt. Technol. Lett. 57(11), 2519–2524 (2015)CrossRefGoogle Scholar
  27. 27.
    S. Ghosh, K.V. Srivastava, An equivalent circuit model of FSS-based metamaterial absorber using coupled line theory. IEEE Antennas Wirel. Propag. Lett. 14, 511–514 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    S.R. Seshadri, Diffraction grating for the general oblique incidence. J. Appl. Phys. 69, 574 (1991)ADSCrossRefGoogle Scholar
  29. 29.
    W. Shang, W. Zhang, J. Yang, T. Zhu, L. Kuang, S. Li, Influence of oblique incidence on transmission grating diffraction in soft X-ray region. Mater. Express 2, 151–156 (2012)CrossRefGoogle Scholar
  30. 30.
    M.-H. Li, H.-L. Yang, X.-W. Hou, Perfect metamaterial absorbers with dual bands. Prog. Electromagn. Res. 108, 37–49 (2010)CrossRefGoogle Scholar
  31. 31.
    L. Huang, H. Chen, Multi-band and polarization insensitive metamaterial absorber. Prog. Electromagn. Res. 113, 103–110 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Praneeth Munaga
    • 1
  • Somak Bhattacharyya
    • 2
  • Saptarshi Ghosh
    • 1
  • Kumar Vaibhav Srivastava
    • 1
  1. 1.Department of Electrical EngineeringIndian Institute of Technology KanpurKanpurIndia
  2. 2.Department of Electronics EngineeringIndian Institute of Technology (BHU) VaranasiVaranasiIndia

Personalised recommendations