Applied Physics A

, 124:321 | Cite as

Effects of the precursor concentration and different annealing ambients on the structural, optical, and electrical properties of nanostructured V2O5 thin films deposited by spray pyrolysis technique

  • Rowshanak Irani
  • Seyed Mohammad Rozati
  • Szabolcs Beke


V2O5 thin films were deposited with different precursor concentrations of 0.01, 0.05, and 0.1 M on glass substrates by spray pyrolysis technique, then the optimized films were annealed in different ambients (air, oxygen, and vacuum). The results showed that by increasing the concentration, the films grew along the (001) direction with an orthorhombic structure. Field emission scanning electron microscopy showed that nanorods were formed when depositing 0.05 molar of VCl3. We conclude that with the precursor concentration, the surface nanostructure can be well-controlled. Annealing improved the crystallinity under all ambients, but the best crystallinity was achieved in vacuum. It was revealed that the as-deposited films had the highest transmission, whereas the films annealed in air had the lowest. When annealed in air, the optical band gap decreased from 2.45 to 2.32 eV. The sheet resistance, resistivity, mobility, conductivity, and carrier concentration were measured for all the prepared V2O5 films.



The authors gratefully acknowledge the research department of University of Guilan.


  1. 1.
    S. Beke, A review of the growth of V2O5 films from 1885 to 2010. Thin Solid Films 519, 1761–1771 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    A. Bouzidi, N. Benramdane, S. Bresson, C. Mathieu, R. Desfeux, M. El Marssi, X-ray and raman study of spray pyrolysed vanadium oxide thin films. Vib. Spectrosc. 57, 182–186 (2011)CrossRefGoogle Scholar
  3. 3.
    K.A. Cook-Chennault, N. Thambi, A.M. Sastry, Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct. 17, 043001–043034 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    M.B. Sahana, C. Sudakar, C. Thapa, G. Lawes, V.M. Naik, R.J. Baird, G.W. Auner, R. Naik, K.R. Padmanabhan, Electrochemical properties of V2O5 thin films deposited by spin coating. Mater. Sci. Eng. B 25, 42–50 (2007)CrossRefGoogle Scholar
  5. 5.
    G.J. Fang, Z.L. Liu, Y.Q. Wang, H.H. Liu, K.L. Yao, Orientated growth of V2O5 electrochromic thin films on transparent conductive glass by pulsed excimer laser ablation technique. J. Phys. D Appl. Phys. 33, 3018–3021 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    A.A. Akl, Thermal annealing effect on the crystallization and optical dispersion of sprayed V2O5 thin films. J. Phys. Chem. Solids 71, 223–229 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    V.I. Pârvulescu, S. Boghosian, V. Pârvulescu, S.M. Jung, P. Grange, Selective catalytic reduction of NO with NH3 over mesoporous V2O5–TiO2–SiO2 catalysts. J. Catal. 217, 172–185 (2003)Google Scholar
  8. 8.
    M. Abbasi, S.M. Rozati, R. Irani, S. Beke, Synthesis and gas sensors behavior of nanostructure V2O5 thin films prepared by spray pyrolysis method. Mater. Sci. Semicond. Process. 29, 132–138 (2015)CrossRefGoogle Scholar
  9. 9.
    S.M. Kanan, O.M. El-Kadri, I.A. Abu-Yousef, M.C. Kanan, Semiconducting metal oxide based sensors for selective gas pollutant detection. Sensors 9, 8158–8196 (2009)CrossRefGoogle Scholar
  10. 10.
    S.S. Kanu, R. Binions, Thin films for solar control applications. Proc. R. Soc. A 466, 19–44 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    F. Béteille, J. Livage, Optical switching in VO2 thin films. J. Sol Gel. Sci. Technol. 13, 915–921 (1998)CrossRefGoogle Scholar
  12. 12.
    Y. Wang, G. Cao, Li+-intercalation electrochemical/electrochromic properties of vanadium pentoxide films by sol electrophoretic deposition. Electrochim. Acta 51, 4865–4872 (2006)CrossRefGoogle Scholar
  13. 13.
    D. Alamarguy, J.E. Castle, M. Liberatore, F. Decker, Distribution of intercalated lithium in V2O5 thin films determined by SIMS depth profiling. Surf. Interface Anal. 38, 847–850 (2006)CrossRefGoogle Scholar
  14. 14.
    T.J. Hanlon, J.A. Coath, M.A. Richardson, Molybdenum-doped vanadium dioxide coatings on glass produced by the aqueous sol–gel method. Thin Solid Films 436, 269–272 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    A. Rougier, A. Blyr, Electrochromic properties of vanadium tungsten oxide thin films grown by pulsed laser deposition. Electrochim. Acta 46, 1945–1950 (2001)CrossRefGoogle Scholar
  16. 16.
    C. Imawan, H. Steffes, F. Solzbacher, E. Obermeier, Structural and gas-sensing properties of V2O5–MoO3 thin films for H2 detection. Sens. Actuators B 77, 346–351 (2001)CrossRefGoogle Scholar
  17. 17.
    A.A. Akl, Crystallization and electrical properties of V2O5 thin films prepared by RF sputtering. Appl. Surf. Sci. 253, 7094–7099 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    H. Poelman, H. Tomaszewski, D. Poelman, L. Fiermans, R. De Gryse, M.F. Reyniers, G.B. Marin, V2O5 thin films deposited by means of d.c. magnetron sputtering from ceramic V2O3 targets. Surf. Interface Anal. 34, 724–727 (2002)CrossRefGoogle Scholar
  19. 19.
    S. Guimond, J.M. Sturm, D. Goebke, Y. Romanyshyn, M. Naschitzki, H. Kuhlenbeck, H.J. Freund, Well-ordered V2O5 (001) thin films on Au (111): growth and thermal stability. J. Phys. Chem. 112, 11835–11846 (2008)Google Scholar
  20. 20.
    S. Beke, L. Kőrösi, S. Papp, L. Nánai, J.G. Kiss, V. Safarov, Nd:YAG laser synthesis of nanostructural V2O5 from vanadium oxide sols: morphological and structural characterizations. Appl. Surf. Sci. 254, 1363–1368 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    D. Barreca, L. Armelao, F. Caccavale, V. Di Noto, A. Gregori, G.A. Rizzi, E. Tondello, Highly oriented V2O5 nanocrystalline thin films by plasma-enhanced chemical vapor deposition. Chem. Mater. 12, 98–103 (2000)CrossRefGoogle Scholar
  22. 22.
    S. Beke, S. Giorgio, L. Kőrösi, L. Nánai, W. Marine, Structural and optical properties of pulsed laser deposited V2O5 thin films. Thin Solid Films 516, 4659–4664 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Iida, H. Takashima, Y. Kanno, Optical and electrical properties of V2O5 thin films fabricated by pulsed laser deposition. Jpn. J. Appl. Phys. 47, 633–636 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    S. Beke, L. Kőrösi, S. Papp, A. Oszkó, L. Nánai, XRD and XPS analysis of laser treated vanadium oxide thin films. Appl. Surf. Sci. 255, 9779–9782 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    S. Beke, L. Kőrösi, L. Nánai, F. Brandi, In-situ optical emission spectroscopy of laser-induced vanadium oxide plasma in vacuum. Vacuum 86, 2002–2004 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    R. Irani, S.M. Rozati, S. Beke, Structural and optical properties of nanostructural V2O5 thin films deposited by spray pyrolysis technique: effect of the substrate temperature. Mater. Chem. Phys. 139, 489–493 (2013)CrossRefGoogle Scholar
  27. 27.
    C.Q. Feng, S.Y. Wang, R. Zeng, Z.P. Guo, K. Konstantinov, H.K. Liu, Synthesis of spherical porous vanadium pentoxide and its electrochemical properties. J. Power Sources 184, 485–488 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    A. Ashour, N.Z. El-Sayed, Physical properties of V2O5 sprayed films. J. Optoelectron. Adv. Mater. 11, 251–256 (2009)Google Scholar
  29. 29.
    C.V. Ramana, B.S. Naidu, O.M. Hussain, R. Pinto, Low-temperature growth of vanadium pentoxide thin films produced by pulsed laser ablation. J. Phys. D Appl. Phys. 34, L35 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    L.E. Brus, Electron–electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984)ADSCrossRefGoogle Scholar
  31. 31.
    C.V. Ramana, R.J. Smith, O.M. Hussain, C.C. Chusuei, C.M. Julien, Correlations between growth conditions, microstructure, and optical properties in pulsed-laser deposited V2O5 thin films. Chem. Mater. 17, 1213–1219 (2005)CrossRefGoogle Scholar
  32. 32.
    G.J. Fang, D. Li, B.L. Yao, Influence of post-deposition annealing on the properties of transparent conductive nanocrystalline ZAO thin films prepared by RF magnetron sputtering with highly conductive ceramic target. Thin Solid Films 418, 156–162 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    E.L. Wolf, M. Medikonda, Understanding the Nanotechnology Revolution, 1st edn. (Wiley-VCH, Weinheim, 2012)CrossRefGoogle Scholar
  34. 34.
    A.D. Raj, T. Pazhanivel, P.S. Kumar, D. Mangalaraj, D. Nataraj, N. Ponpandian, Self-assembled V2O5 nanorods for gas sensors. Curr. Appl. Phys. 10, 531–537 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    J. Woellenstein, J.A. Plaza, C. Cane, Y. Min, H. Boettner, H.L. Tuller, A novel single chip thin film metal oxide array. Sens. Actuator B 93, 350–355 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Rowshanak Irani
    • 1
  • Seyed Mohammad Rozati
    • 1
  • Szabolcs Beke
    • 2
  1. 1.Department of PhysicsUniversity of GuilanRashtIran
  2. 2.Department of NanophysicsIstituto Italiano di Tecnologia (IIT)GenoaItaly

Personalised recommendations