Skip to main content
Log in

Thermo-elasto-plastic simulations of femtosecond laser-induced multiple-cavity in fused silica

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The formation and the interaction of multiple cavities, induced by tightly focused femtosecond laser pulses, are studied using a developed numerical tool, including the thermo-elasto-plastic material response. Simulations are performed in fused silica in cases of one, two, and four spots of laser energy deposition. The relaxation of the heated matter, launching shock waves in the surrounding cold material, leads to cavity formation and emergence of areas where cracks may be induced. Results show that the laser-induced structure shape depends on the energy deposition configuration and demonstrate the potential of the used numerical tool to obtain the desired designed structure or technological process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Opt. Lett. 21, 1729 (1996)

    Article  ADS  Google Scholar 

  2. Y. Shimotsuma, P.G. Kazansky, J. Qiu, K. Hirao, Phys. Rev. Lett. 91, 247405 (2003)

    Article  ADS  Google Scholar 

  3. S. Juodkazis, A.V. Rode, E.G. Gamaly, S. Matsuo, H. Misawa, Appl. Phys. B 77, 361 (2003)

    Article  ADS  Google Scholar 

  4. R.R. Gattass, E. Mazur, Nat. Photon. 2, 219 (2008)

    Article  ADS  Google Scholar 

  5. J. Gottmann, D. Wortmann, M. Hörstmann-Jungemann, Appl. Surf. Sci. 255, 5641 (2009)

    Article  ADS  Google Scholar 

  6. G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, R. Stoian, Opt. Express 17, 9515 (2009)

    Article  ADS  Google Scholar 

  7. J. Bonse, J. Krüger, S. Höhm, A. Rosenfeld, J. Laser Appl. 24, 042006 (2012)

    Article  ADS  Google Scholar 

  8. S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E.B. Kley, A. Tünnermann, S. Nolte, Laser Photon. Rev. 6, 787 (2012)

    Article  Google Scholar 

  9. M. Kumkar, L. Bauer, S. Russ, M. Wendel, J. Kleiner, D. Grossmann, K. Bergner, S. Nolte, Proc. SPIE 8972, 897214 (2014)

    Article  Google Scholar 

  10. R. Buividas, M. Mikutis, S. Juodkazis, Prog. Quantum Electron. 38, 119 (2014)

    Article  ADS  Google Scholar 

  11. Y. Liao, J. Ni, L. Qiao, M. Huang, Y. Bellouard, K. Sugioka, Y. Cheng, Optica 2, 329 (2015)

    Article  Google Scholar 

  12. F. Hendricks, V.V. Matylitsky, M. Domke, H.P. Huber, Proc. SPIE 9740, 97401A (2016)

    Article  ADS  Google Scholar 

  13. E.N. Glezer, E. Mazur, Appl. Phys. Lett. 71, 882 (2011)

    Article  ADS  Google Scholar 

  14. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolaï, V.T. Tikhonchuk, Phys. Rev. Lett. 96, 166101 (2006)

    Article  ADS  Google Scholar 

  15. E.G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, V.T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006)

    Article  ADS  Google Scholar 

  16. L. Hallo, A. Bourgeade, V.T. Tikhonchuk, C. Mézel, J. Breil, Phys. Rev. B 76, 024101 (2007)

    Article  ADS  Google Scholar 

  17. C. Mézel, L. Hallo, A. Bourgeade, D. Hébert, V.T. Tikhonchuk, B. Chimier, B. Nkonga, G. Schurtz, G. Travaillé, Phys. Plasmas 15, 093504 (2008)

    Article  ADS  Google Scholar 

  18. K. Mishchik, G. Cheng, G. Huo, I.M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, R. Stoian, Opt. Exp. 24809, 18 (2010)

    Google Scholar 

  19. A. Vailionis, E.G. Gamaly, V. Mizeikis, W. Yang, A.V. Rode, S. Juodkazis, Nat. Commun. 2, 445 (2011)

    Article  ADS  Google Scholar 

  20. M.K. Bhuyan, M. Somayaji, A. Mermillod-Blondin, F. Bourquard, J.P. Colombier, R. Stoian, Optica 4, 951 (2017)

    Article  Google Scholar 

  21. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, K. Hirao, Opt. Express 15, 5674 (2007)

    Article  ADS  Google Scholar 

  22. D. Hébert, L. Hallo, L. Voisin, T. Desanlis, A. Galtié, B. Bicrel, C. Maunier, P. Mercier, G. Duchateau, J. Appl. Phys. 109, 123527 (2011)

    Article  ADS  Google Scholar 

  23. N.M. Bulgakova, V.P. Zhukov, S.V. Sonina, Y.P. Meshcheryakov, J. Appl. Phys. 118, 233108 (2015)

    Article  ADS  Google Scholar 

  24. S. Najafi, R. Massudi, A. Ajami, C.S.R. Nathala, W. Husinsky, A.S. Arabanian, J. Appl. Phys. 120, 153102 (2016)

    Article  ADS  Google Scholar 

  25. R. Beuton, B. Chimier, J. Breil, D. Hébert, P.H. Maire, G. Duchateau, J. Appl. Phys. 122, 203104 (2017)

    Article  ADS  Google Scholar 

  26. M.L. Wilkins, Methods in Computational Physics, volume 3, chapter Calculation of Elastic-Plastic Flow (Academic Press, New York, 1964), pp 211–263

  27. P.H. Maire, R. Abgrall, J. Breil, R. Loubere, B. Rebourcet, J. Comput. Phys. 235, 626 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  28. F. Courvoisier, J. Zhang, M.K. Bhuyan, M. Jacquot, J.M. Dudley, Appl. Phys. A 112, 29 (2013)

    Article  ADS  Google Scholar 

  29. M. Sakakura, Y. Ishiguro, N. Fukuda, Y. Shimotsuma, K. Miura, Opt. Express 21, 26921 (2013)

    Article  ADS  Google Scholar 

  30. A. Courvoisier, M.J. Booth, P.S. Salter, Appl. Phys. Lett. 109, 031109 (2016)

    Article  ADS  Google Scholar 

  31. Y. Bellouard, A. Champion, B. McMillen, S. Mukherjee, R.R. Thomson, C. Pépin, P. Gillet, Y. Cheng, Optica 3, 1285 (2016)

    Article  Google Scholar 

  32. F. Irgens, Continuum Mechanics (Springer, New York, 2008)

    Google Scholar 

  33. R. von Mises, Math. Phys. 1, 582 (1913)

    Google Scholar 

  34. G. Kermouche, E. Barthel, D. Vandembroucq, P. Dubujet, Acta Mater. 56, 3222 (2008)

    Article  Google Scholar 

  35. D. Spenlé, R. Gourhant, Guide du calcul en mécanique (2003)

  36. J. Breil, S. Galera, P.H. Maire, Comput. Fluids 46, 161 (2011)

    Article  MathSciNet  Google Scholar 

  37. J.C. Boettger, SESAME equation of state number 7386, fused quartz (Los Alamos National Laboratory Report LA-11488-MS, 1989)

  38. A. Pedone, M.C. Menziani, A.N. Cormack, J. Phys. Chem. C 119, 25499 (2015)

    Article  Google Scholar 

  39. J.L. Fanchon, Guide de mecanique: Sciences et technologies industrielles (Nathan, Paris, 2001)

    Google Scholar 

  40. F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, S. Nolte, Laser Photon. Rev. 10, 327 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Vladimir Tikhonchuk and Jocelain Trela are acknowledged for fruitful discussions. The CEA and the Région Aquitaine (MOTIF Project) are acknowledged for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Beuton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beuton, R., Chimier, B., Breil, J. et al. Thermo-elasto-plastic simulations of femtosecond laser-induced multiple-cavity in fused silica. Appl. Phys. A 124, 324 (2018). https://doi.org/10.1007/s00339-018-1743-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1743-x

Navigation