Applied Physics A

, 124:317 | Cite as

Field-effect-dependent thermoelectric power in highly resistive Sb2Se3 single nanowire

  • Kien Wen Sun
  • Ting-Yu Ko
  • Muthaiah Shellaiah


In this paper, we report the results of our experiments on and measurements of electrical resistivity and thermoelectric power (Seebeck coefficient) from single-crystalline antimony triselenide (Sb2Se3) single nanowires (NWs) with high resistivity (σ ~ 4.37 × 10−4 S/m). A positive Seebeck coefficient of approximately 661 µV/K at room temperature was obtained using a custom-made thermoelectric power probe with an alternating current lock-in method (the 2ω technique), which indicates that the thermal transport is dominated by holes. The measured Seebeck coefficient of the NWs is a factor of 2–3 lower than their bulk counterparts and is comparable to that of a highly conductive Sb2Se3 single NWs (approximately − 750 µV/K). We observed an increase in the Seebeck coefficients with increased bias voltages by field-effect gating, which cannot be explained by the modulation of the Fermi level in the NWs.



This work is supported by the Ministry of Science and Technology of the Republic of China (Contract no. NSC 102-2112-M-009-011-MY3) and the Approaching Top University (ATU) Program of the Ministry of Education of the Republic of China.


  1. 1.
    D M Rowe ed. CRC Handbook of Thermoelectrics, (CRC, Boca Raton, 1995)Google Scholar
  2. 2.
    K. Matsubara, Development of a high efficient thermoelectric stack for a waste exhaust heat recovery of vehicles. Proc. Int. Conf. Thermoelectr. 418–423 (2002)Google Scholar
  3. 3.
    M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.P. Fleurial, New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007)CrossRefGoogle Scholar
  4. 4.
    G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.P. Fleurial, T. Caillat, Recent developments in thermoelectric materials. Int. Mater. Rev. 48, 45–66 (2003)CrossRefGoogle Scholar
  5. 5.
    L.D. Hick, M.S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727–12731 (1993)ADSCrossRefGoogle Scholar
  6. 6.
    L.D. Hick, M.S. Dresselhaus, Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47, 16631–16634 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    M. Fardy, A.I. Hochbaum, J. Goldberger, M.M. Zhang, P. Yang, Synthesis and thermoelectric characterization of lead chalcogenide nanowires. Adv. Mater. 19 3047–3051 (2007)CrossRefGoogle Scholar
  8. 8.
    W. Liang, A.I. Hochbaum, M. Fardy, O. Rabin, M.M. Zhang, P. Yang, Field-effect modulation of seebeck coefficient in single PbSe nanowires. Nano Lett. 9 1689–1693 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    G. Tai, B. Zhou, W.L. Guo, Structural characterization and thermoelectric transport properties of uniform single-crystalline lead telluride nanowires. J. Phys. Chem. C 112, 11314–11318 (2008)CrossRefGoogle Scholar
  10. 10.
    J.W. Roh, S.Y. Jang, J. Kang, S. Lee, J.S. Noh, W. Kim, J. Park, W. Lee, Size-dependent thermal conductivity of individual single-crystalline PbTe nanowires. Appl. Phys. Lett. 96 103101 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    K. Biswas, J.Q. He, Q.C. Zhang, G.Y. Wang, C. Uher, V.P. Dravid, M.G. Kanatzids, Strained endotaxial nanostructures with high thermoelectric figure of merit. Nat. Chem. 3, 160–166 (2011)CrossRefGoogle Scholar
  12. 12.
    J. Androulakis, C.H. Lin, H.J. Kong, C. Uher, C.I. Wu, T. Hogan, B.A. Cook, T. Caillat, K.M. Paraskevopoulos, M.G. Kanatzidis, Spinodal decomposition and nucleation and growth as a means to built nanostructured thermoelectrics: enhanced performance in Pb1 – xSnxTe-PbS. J. Am. Chem. Soc. 129, 9780–9788 (2007)CrossRefGoogle Scholar
  13. 13.
    K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, M.G. Kanatzidis, Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science 303 818–821 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Thermal transport measurement of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, A. Majumdar, Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83 2934–2936 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe, T. Shimizu, Measuring the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 95 065502 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    L. Shi, D. Yao, G. Zhang, B. Li, Size dependent thermoelectric properties of silicon nanowires. Appl. Phys. Lett. 95, 063102 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    G.S. Doerk, C. Carraro, R. Maboudian, Single nanowire thermal conductivity measurements by Raman thermography. ACS Nano 4 4908–4914 (2010)CrossRefGoogle Scholar
  19. 19.
    M.M. Rojo, J. Martin, S. Grauby, T. Borca-Tasciuc, S. Dilhaire, M. Martin-Gonzalez, Decrease in thermal conductivity in polymetric P3HT nnaowires by size-reduction induced by crystal orientation. New Approaches Towards Thermal Transport Engineering of Organic Materials. Nanoscale 6, 7858–7865 (2014)Google Scholar
  20. 20.
    E.O. Wrasse, A. Torres, R.J. Baierle, A. Fazzio, T.M. Schmidt, Size-effect induced thermoelectric figure of merit in PbSe and PbTe. Nanowires Phys. Chem. Chem. Phys. 16, 8114–8118 (2014)CrossRefGoogle Scholar
  21. 21.
    N.S. Platakis, H.C. Gatos, Threshold, and memory switching in crystalline chalcogenide materials. Phys. Status Solidi A13, K1–K4Google Scholar
  22. 22.
    J. Black, E.M. Conwell, L. Seigle, C.W. Spencer, Electrical and optical properties of some M2 V–BN3 VI–B semiconductors. J. Phys. Chem. Solids 2, 240–251 (1957)ADSCrossRefGoogle Scholar
  23. 23.
    K.Y. Rajpure, C.D. Lokhande, C.H. Bhosele, Effect of the substrate temperature on the properties of spray deposited Sb–Se thin films from non-aqueous medium. Thin Solid Films 311, 114–118 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    V.B. Nascimento, V.E. de Carvalho, R. Paniago, E.A. Soares, L.O. Ladeira, H.D. Pfannes, XPS and EELS Study of the Bismuth Selenide. J. Electron Spectrosc. 104 99–107 (1999)CrossRefGoogle Scholar
  25. 25.
    K.Y. Rajpure, C.D. Lokhande, C.H. Bhosale, Photoelectrochemical studies on electrodeposited Cd–Fe–Se thin films. Mater. Res. Bull. 34, 1079–1087 (1999)CrossRefGoogle Scholar
  26. 26.
    T. Zhai, L. Li, X. Wang, Recent developments in one-dimensional inorganic nanostructures for photodetectors. Adv. Funct. Mater. 20, 4233–4248 (2010)CrossRefGoogle Scholar
  27. 27.
    J. Ma, Y. Wang, Y. Wang, P. Peng, J. Lian, X. Duan, Z. Liu, X. Liu, Q. Chen, T. Kim, G. Yao, W. Zheng, One-dimensional Sb2Se3 nanostructures: solvothermal synthesis, growth mechanism, optical and electrochemical properties. Crys Eng Comm. 13 2369–2374 (1999)CrossRefGoogle Scholar
  28. 28.
    J. Ma, P. Wang, Y. Wang, Q. Chen, J. Lian, W. Zheng, Controlled synthesis of one-dimensional Sb2Se3 nanostructures and their electrochemical properties. J. Phys. Chem. C 113, 13588–13592 (2009)CrossRefGoogle Scholar
  29. 29.
    D. Choi, Y. Jang, J. Lee, G.H. Jeong, D. Whang, S.W. Hwang, K.S. Cho, S.W. Kim, Diameter-controlled and surface-modified Sb2Se3 nanowires and their photodetector performance. Sci. Rep. 4, 6714 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    T. Zhai, M. Ye, L. Li, X. Fang, M. Liao, Y. Li, Y. Koide, Y. Bando, D. Golberg, Single-crystalline Sb2Se3 nanowires for high-performance field emitters and photodetectors. Adv. Mater. 22 4530–4533 (2010)CrossRefGoogle Scholar
  31. 31.
    J. Ota, S.K. Srivastava, Synthesis and optical properties of Sb2Se3 nanorods. Opt. Mater. 32, 1488–1492 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    Y.Q. Liu, M. Zhang, F.X. Wang, G.B. Pan, Facile microwave-assisted synthesis of uniform Sb2Se3 nanowires for high performance photodetectors. J. Mater. Chem. C 2, 240–244 (2014)CrossRefGoogle Scholar
  33. 33.
    X. Wang, K.F. Cai, S. Shang, Chen, Preparation and electrical transport properties of nanostructured Sb2Se3 films fabricated by combining spin-coating and gas-induced reduction. J. Nanopart. Res. 15, 1541 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    J. Klammer, J. Bachmann, W. Töllner, D. Bourgault, L. Cagnon, U. Gösele, K. Nielsch, Electrochemical route to thermoelectric nanowires via organic electrolytes. Phys. Status Solidi B 247 1384–1392 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    R.J. Mehta, C. Karthik, W. Jiang, B. Singh, Y. Shi, R.W. Siegel, T. Borca-Tasciuc, G. Ramanath, High electrical conductivity antimony selenide nanocrystals and assemblies. Nano Lett. 10 4417–4422 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    Y. Tian, M.R. Sakr, J.M. Kinedr, D. Liang, M.J. MacDonald, R.L.J. Qui, H.J. Gao, X.P.A. Gao, One-dimensional quantum confinement effect modulated thermoelectric properties in InAs nanowires. Nano Lett. 12 6492–6497 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    H.W. Chang, B. Sarkar, C.W. Liu, Synthesis of Sb2Se3 nanowires via a solvothermal route from the single source precursor Sb[Se2P(OiPr)2]3. Cryst. Growth Des. 7, 2691 (2007)CrossRefGoogle Scholar
  38. 38.
    Y.F. Lin, H.W. Chang, S.Y. Lu, C.W. Liu, Preparation, characterization, and electrophysical properties of nanostructured BiPO4 and Bi2Se3 derived from a structurally characterized, single-source precursor Bi[Se2P(OiPr)2]3. J. Phys. Chem. C 111, 18538 (2007)CrossRefGoogle Scholar
  39. 39.
    T.Y. Ko, C.H. Yang, K.W. Sun, H.W. Chang, B. Sarkar, C.W. Liu, Electrical and optical properties of a single Sb2Se3 nanorod. Cent. Eur. J. Chem. 6, 197 (2009)Google Scholar
  40. 40.
    T.Y. Ko, M. Shellaiah, K.W. Sun, Thermal and thermoelectric transport in highly resistive single Sb2Se3 nanowires and nanowire bundles. Sci. Rep. 6, 35086 (2016)ADSCrossRefGoogle Scholar
  41. 41.
    L. Shi, D. Li, C. Yu, W. Jang, D. Kim, Z. Yao, P. Kim, A. Majumdar, Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Trans. T ASME 125 881–888 (2003)CrossRefGoogle Scholar
  42. 42.
    M.M. Rojo, O.C. Calero, A.F. Lopeandia, J. Rodriguez-Viejo, M. Martin-Gonzalez, Review on measurement techniques of transport properties of nanowires. Nanoscale 5, 11526–11544 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    L.R. Gilbert, B. Van Pelt, C. Wood, The thermal activation energy of crystalline Sb2Se3. J. Phys. Chem. Solids 35, 1629–1632 (1974)ADSCrossRefGoogle Scholar
  44. 44.
    Y.M. Lin, O. Rabin, S.B. Cronin, J.Y. Ying, M.S. Dresselhaus, Semimetal-semiconductor transition in Bi1 – xSbx alloy nanowires and their thermoelectric properties. Appl. Phys. Lett. 81, 2403–2405 (2002)ADSCrossRefGoogle Scholar
  45. 45.
    C.R. Pichard, C.R. Tellier, A.J. Tosser, Thermoelectric power of thin polycrystalline metal films in an effective mean free path model. J. Phys. F: Met. Phys. 10, 2009–2014 (1980)ADSCrossRefGoogle Scholar
  46. 46.
    H. Bao, X. Cui, C.M. Li, Q. Song, Z. Lu, J. Guo, Synthesis and electrical transport properties of single-crystal antimony sulfide nanowires. J. Phys. Chem. C 111 17131–17135 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kien Wen Sun
    • 1
    • 2
  • Ting-Yu Ko
    • 1
  • Muthaiah Shellaiah
    • 1
  1. 1.Department of Applied ChemistryNational Chiao Tung UniversityHsinchuTaiwan
  2. 2.Department of Electronics EngineeringNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations