Advertisement

Applied Physics A

, 124:322 | Cite as

Double-use linear polarization convertor using hybrid metamaterial based on VO2 phase transition in the terahertz region

  • Huanling Zou
  • Zhongyin Xiao
  • Wei Li
  • Chuan Li
Article

Abstract

A number of polarization convertors based on metamaterials(MMs) have been investigated recently, but no one has proposed a high-efficiency linear polarization transformer both in transmission and reflection modes. Here, a bilayered MM embedded with vanadium dioxide (VO2) composed of a pair of sloping gold patches, bottom hybrid layer and a dielectric spacer is proposed as a double-use linear polarization convertor. It has been demonstrated numerically that this device has advantages of switching between transmission polarization conversion and reflection polarization conversion based on the phase transition of the VO2 film in the terahertz (THz) regime and the polarization conversion ratios (PCR) in both cases are higher than 90% in wide bands. The simulated linear polarization transmission/reflection coefficients and the surface current distributions give insight into the mechanism of the linear polarization conversions. Moreover, the physical mechanism of polarization sensitivity of the designed structure is investigated by the distributions of electric field. The proposed double-use linear polarization convertor shows great prospects in polarization imaging, and polarized light communications.

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No.61275070) and Shanghai Natural Science Foundation (Grant No. 15ZR1415900).

References

  1. 1.
    K. Wiesauer, C. Jördens, Recent advances in birefringence studies at THz frequencies. J. Infrared Millim Terahertz Waves 34(11), 663–681 (2013)CrossRefGoogle Scholar
  2. 2.
    A.E. Akosman, E. Ozbay, M. Mutlu, Broadband circular polarizer based on high-contrast gratings. Opt. Lett. 37(11), 2094 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    C. Huang, Y. Feng, J. Zhao et al., Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures. Phys. Rev. B Condens. Matter 85(19), 195131 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    L. Cong, W. Cao, X. Zhang et al., A perfect metamaterial polarization rotator. Appl. Phys. Lett. 103(17), 17039 (2013)CrossRefGoogle Scholar
  5. 5.
    H. Chen, J. Wang, H. Ma et al., Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances. J. Appl. Phys. 115(15), 177403–176229 (2014)Google Scholar
  6. 6.
    P. Yu, S. Chen, J. Li et al., Generation of vector beams with arbitrary spatial variation of phase and linear polarization using plasmonic metasurfaces. Opt. Lett. 40(14), 3229–3232 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    J. Zhao, Y. Cheng, A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial. Appl. Phys. B 122(10), 255 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    J. Wang, Z. Shen, W. Wu, Broadband and high-efficiency circular polarizer based on planar-helix chiral metamaterials. Appl. Phys. Lett. 111(11), 113503 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    J.K. Gansel, M. Thiel, M.S. Rill et al., Gold helix photonic metamaterial as broadband circular polarizer. Science 325(5947), 1513 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    H.S. Park, T.T. Kim, H.D. Kim et al., Nondispersive optical activity of meshed helical metamaterials. Nat. Commun. 5(5), 5435 (2014)CrossRefGoogle Scholar
  11. 11.
    Y. Ye, S. He, 90° polarization rotator using a bilayered chiral metamaterial with giant optical activity. Appl. Phys. Lett. 96(20), 788 (2010)CrossRefGoogle Scholar
  12. 12.
    Z. Wei, Y. Cao, Y. Fan et al., Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators. Appl. Phys. Lett. 99(22), 221907-221907-3 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Huang, Z. Yao, F. Hu et al., Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region. Carbon 119, 305–313 (2017)CrossRefGoogle Scholar
  14. 14.
    T.T. Kim, S.O. Sang, H.D. Kim et al., Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials. Sci. Adv. 3(9), e1701377 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    T.T. Lv, Y.X. Li, H.F. Ma et al., Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition. Sci. Rep. 6, 23186 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    J. Hao, Y. Yuan, L. Ran et al., Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys. Rev. Lett. 99(6), 063908 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    N.K. Grady, J.E. Heyes, D.R. Chowdhury et al., Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 340(6138), 1304–1307 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    T. Cao, M.J. Cryan, Enhancement of circular dichroism by a planar non-chiral magnetic metamaterial. J. Opt. 14(8), 463–467 (2012)CrossRefGoogle Scholar
  19. 19.
    T. Cao, C. Wei, L. Mao et al., Extrinsic 2D chirality: giant circular conversion dichroism from a metal-dielectric-metal square array. Sci. Rep. 4, 7442 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    T. Cao, C. Wei, Y. Li, Dual-band strong extrinsic 2D chirality in a highly symmetric metal-dielectric-metal achiral metasurface. Opt. Mater. Express 6(2), 303 (2016)CrossRefGoogle Scholar
  21. 21.
    C. Wei, L. Zhang, T. Cao, Modeling of multi-band circular dichroism using metal/dielectric/metal achiral metamaterials. Opt. Mater. Express 4(8), 1526–1534 (2014)CrossRefGoogle Scholar
  22. 22.
    P. Xu, S.Y. Wang, W. Geyi, A linear polarization converter with near unity efficiency in microwave regime. J. Appl. Phys. 121(14), 1804–1949 (2017)CrossRefGoogle Scholar
  23. 23.
    H. Cheng, S. Chen, P. Yu et al., Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial. Appl. Phys. Lett. 103(22), 151107 (2013)ADSGoogle Scholar
  24. 24.
    T. Cao, C.W. Wei, L.B. Mao et al., Tuning of giant 2D-chiroptical response using achiral metasurface integrated with graphene. Opt. Express 23(14), 18620–18629 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    X. Zheng, Z. Xiao, X. Ling, A tunable hybrid metamaterial reflective polarization converter based on vanadium oxide film. Plasmonics, 13, 1–5 (2017)Google Scholar
  26. 26.
    P. Jepsen, B. Fischer, A. Thoman et al., Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy. Phys. Rev. B 74(20), 3840–3845 (2006)CrossRefGoogle Scholar
  27. 27.
    Q.Y. Wen, H.W. Zhang, Q.H. Yang et al., Terahertz metamaterials with VO2 cut-wires for thermal tunability. Appl. Phys. Lett. 97(2), 597 (2010)CrossRefGoogle Scholar
  28. 28.
    Y. Zhao, G. Karaoglan-Bebek, X. Pan et al., Hydrogen-doping stabilized metallic VO2 (R) thin films and their application to suppress Fabry-Perot resonances in the terahertz regime. Appl. Phys. Lett. 104(24), 3389 (2014)CrossRefGoogle Scholar
  29. 29.
    Y. Zhu, S. Vegesna, Y. Zhao et al., Tunable dual-band terahertz metamaterial bandpass filters. Opt. Lett. 38(14), 2382–2384 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    R. Xia, X. Gui, X. Jing et al., Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials. Opt. Mater. Express 7(3), 977 (2017)CrossRefGoogle Scholar
  31. 31.
    S.K. Earl, T.D. James, T.J. Davis et al., Tunable optical antennas enabled by the phase transition in vanadium dioxide. Opt. Express 21(22), 27503–27508 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    Q.Y. Wen, H.W. Zhang, Q.H. Yang et al., A tunable hybrid metamaterial absorber based on vanadium oxide films. J. Phys. D Appl. Phys. 45(23), 235106–235110(5) (2012)ADSCrossRefGoogle Scholar
  33. 33.
    S.K. Earl, T.D. James, D.E. Gómez et al., Switchable polarization rotation of visible light using a plasmonic metasurface. Appl Photonics 2(1), 016103 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    L. Cong, N. Xu, J. Gu et al., Highly flexible broadband terahertz metamaterial quarter-wave plate. Laser Photonics Rev. 8(4), 626–632 (2014)CrossRefGoogle Scholar
  35. 35.
    G.S. Kong, G.Z. Wang, H.F. Ma et al., Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces. Opt. Mater. Express 4(8), 1717–1724 (2014)CrossRefGoogle Scholar
  36. 36.
    X.J. Shang, X. Zhai, J. Yue et al., Broad-band and high-efficiency polarization converters around 1550 nm based on composite structures. Opt. Express 25(13), 14406 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    R. Zhao, L. Zhang, J. Zhou et al., Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index[J]. Phys. Rev. B Condens. Matter 83(3), 63–75 (2010)Google Scholar
  38. 38.
    L. Zhou, W.J. Wen, C.T. Chan, P. Sheng, Multiband subwavelength magnetic reflectors based on fractals. Appl. Phys. Lett. 83, 3257–3259 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    J.Y. Yin, X. Wan, Q. Zhang et al., Ultra wideband polarization-selective conversions of electromagnetic waves by metasurface under large-range incident angles. Sci. Rep. 5, 12476 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data ScienceShanghai UniversityShanghaiChina

Personalised recommendations