Applied Physics A

, 124:318 | Cite as

Effect of substrate on texture and mechanical properties of Mg–Cu–Zn thin films

  • F. Eshaghi
  • A. Zolanvari


In this work, thin films of Mg–Cu–Zn with 60 nm thicknesses have been deposited on the Si(100), Al, stainless steel, and Cu substrates using DC magnetron sputtering. FESEM images displayed uniformity of Mg–Cu–Zn particles on the different substrates. AFM micrograph revealed the roughness of thin film changes due to the different kinds of the substrates. XRD measurements showed the existence of strong Mg (002) reflections and weak Mg (101) peaks. Residual stress and adhesion force have been measured as the mechanical properties of the Mg–Cu–Zn thin films. The residual stresses of thin films which have been investigated by X-ray diffraction method revealed that the thin films sputtered on the Si and Cu substrates endure minimum and maximum stresses, respectively, during the deposition process. However, the force spectroscopy analysis indicated that the films grew on the Si and Cu experienced maximum and minimum adhesion force. The texture analysis has been done using XRD instrument to make pole figures of Mg (002) and Mg (101) reflections. ODFs have been calculated to evaluate the distribution of the orientations within the thin films. It was found that the texture and stress have an inverse relation, while the texture and the adhesion force of the Mg–Cu–Zn thin films have direct relation. A thin film that sustains the lowest residual stresses and highest adhesive force had the strongest {001} basal fiber texture.



The authors would like to thank Mr. Tahmasbi from Training Center of Mashin Sazi Arak for preparing some materials.


  1. 1.
    W. Zhang, J. Mao, S. Li, Z. Chen, Z. Guo, Phosphorus-based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 139, 3316–3319 (2017)CrossRefGoogle Scholar
  2. 2.
    H. Shirai, M.T. Nguyen, D. Čempel, H. Tsukamoto, T. Tokunaga, Y.-Ch Liao, T. Yonezawa, Preparation of Au/Pd bimetallic nanoparticles by a microwave-induced plasma in liquid process. Bull. Chem. Soc. Jpn 90, 279–285 (2017)CrossRefGoogle Scholar
  3. 3.
    D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017)CrossRefGoogle Scholar
  4. 4.
    C.V. Thompson, Structure evolution during processing of polycrystalline films. Annu. Rev. Mater. Sci. 30, 159 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    I. Petrov, P.B. Barna, L. Hultman, J.E. Greene, Microstructural evolution during film growth. J. Vac. Sci. Tech. A 21, 117 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    K.P. Almtoft, D. thesis, Structural Characterization of Nanocrystalline Thin Films Grown by Magnetron Sputtering, Interdisciplinary Nanoscience Center (iNANO), and Department of Physics and Astronomy University of Aarhus, (2006)Google Scholar
  7. 7.
    R. Carel, D. thesis, “Grain growth and texture evolution in thin films”, Massachusettes Institute of Technology, (1995)Google Scholar
  8. 8.
    O. Padalka, D. thesis, On the relation between properties and microstructure of new Mg based alloys and their composites for advanced structural applications, Faculty of Mathematics and Physics, Charles University Prague, (2008)Google Scholar
  9. 9.
    M.K. Kulekci, Magnesium and its alloys applications in automotive industry”. Int. J. Adv. Manuf. Technol. 39, 851–865 (2008)CrossRefGoogle Scholar
  10. 10.
    J. Hirsch, T. Al-Samman, Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications”. Acta Mater. 61, 818–843 (2013)CrossRefGoogle Scholar
  11. 11.
    S.J. Chung, A. Roy, D. Hong, J.P. Leonard, P.N. Kumta, Microstructure of Mg–Zn–Ca thin film derived by pulsed laser deposition”. Mater. Sci. Eng. B 176, 1690–1694 (2011)CrossRefGoogle Scholar
  12. 12.
    S. Fu, Q. Li, X. Jing, Q. Zhang, Z. Chen, W. Liu, Review on research and development of heat resistant Magnesium alloy, Proc. Int. Conf. Mech. Eng. Mater. Sci, (MEMS 2012) 611–614Google Scholar
  13. 13.
    Y. Pan, S. He, D. Wang, D. Huang, T. Zheng, S. Wang, P. Dong, C. Chen, In vitro degradation and electrochemical corrosion evaluations of microarc oxidized pure Mg, Mg–Ca and Mg–Ca–Zn alloys for biomedical applications, Mater. Sci. Eng. C (2014)Google Scholar
  14. 14.
    M.C. Li, S.S. Xin, M.Y. Wu, Electrodeposition behavior of Mg with Zn from acidic sulfate solutions”. J. Solid State Electr. 14, 2235–2240 (2010)CrossRefGoogle Scholar
  15. 15.
    Y.C. Lo, J.C. Huang, C.L. Chen, S.P. Ju, H.S. Chou, X.H. Du, M.C. Liu, C.N. Kuo, Atomic simulation of vitrification transformation in Mg–Cu thin film. J. Comput. Theor. Nanos. 5, 1–5 (2008)CrossRefGoogle Scholar
  16. 16.
    H.S. Chou, J.C. Huang, Y.H. Lai, L.W. Chang, X.H. Du, J.P. Chu, T.G. Nieh, Amorphous and nanocrystalline sputtered Mg–Cu thin films. J. Alloy. Compd. 483, 341–345 (2009)CrossRefGoogle Scholar
  17. 17.
    Z. Ma, Y. Liu, L. Yu, Q. Cai, Investigation of phase composition and nanoscale microstructure of high-energy ball-milled MgCu sample. Nanoscale Res. Lett. 7, 390 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    J. Rodríguez-Viejo, M. Gonzalez-Silveira, M.T. Clavaguera-Mora, Calorimetric and X-ray analysis of the intermediate phase formation in Cu/Mg multilayers. J. Appl. Phys. 93, 8, 4447–4453 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    H. Shao, Y. wang, H. Xu, X. Li, Calorimetric and X-ray analysis of the intermediate phase formation in Cu/Mg multilayers, J. Solid State Chem. 2211–2217 (2005)Google Scholar
  20. 20.
    J. Li, J.W. Strane, S.W. Russell, S.Q. Hong, J.W. Mayer, T.K. Marais, C.C. Theron, R. Pretorius, Observation and prediction of first phase formation in binary Cumetal thin films. J. Appl. Phys. 72, 7,2810–2816 (1992)ADSGoogle Scholar
  21. 21.
    Y.N. Wang, J.C. Huang, Texture analysis in hexagonal materials. Mater. Chem. Phys. 81, 11–26 (2003)CrossRefGoogle Scholar
  22. 22.
    K.P. Almtoft, “Structural Characterization of Nanocrystalline Thin Films Grown by Magnetron Sputtering”, PhD Thesis, (2006)Google Scholar
  23. 23.
    F. Eshaghi, A. Zolanvari, Effect of high temperature and film thicknesses on the texture evolution in Ag thin films. Eur. Phys. J. Plus 163, 132 (2017)Google Scholar
  24. 24.
    Y. Zoo, T.L. Alford, Comparison of preferred orientation and stress in silver thin films on different substrates using X-ray diffraction. J. Appl. Phys. 101, 033505 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    F. Kurtuldu, E. Altuncu, Surface Wettability Properties of 304 Stainless Steel Treated by Atmospheric-Pressure Plasma System, 4th International Symposium on Innovative Technologies in Engineering and Science, Alanya/Antalya—Turkey, (2016)Google Scholar
  26. 26.
    D.H. Prajitno, A. Maulana., D.G. Syarif, Effect of surface roughness on contact angle measurement of nanofluid on surface of stainless steel 304 by sessile drop method, J. Phys.: Conference Series 739, (2016) 012029Google Scholar
  27. 27.
    K. Terpiłowski, L. Hołysz, D. Rymuszka, R. Banach, Comparison of contact angle measurement methods of liquids on metal alloys, Annales Universitatis Mariae Curie-Sklodowska-Chemia, SECTIO AA, VOL. LXXI, 1, (2016)Google Scholar
  28. 28.
    L. Hołysz, M. Mirosław, K. Terpiłowski, A. Szcześ, Influence of relative humidity on the wettability of silicon wafer surfaces, Annales Universitatis Mariae Curie-Sklodowska-Chemia, SECTIO AA, VOL. LXIII, 18, (2008)Google Scholar
  29. 29.
    C.J. Smithlls, E.A. Brands, metal reference Book, Butterworths London, 5th edn. (1976), pp. 975–980Google Scholar
  30. 30.
    A.R. Shetty, A. Karimi, M. Cantoni, Effect of deposition angle on the structure and properties of pulsed-DC magnetron sputtered TiAlN thin films”. Thin Solid Films 519, 4262–4270 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    J.-M. Zhang, D.-D. Wang, K.-W. Xu, Calculation of the surface energy of hcp metals by using the modified embedded atom method”. Appl. Surf. Sci. 253, 2018–2024 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    D.M. Mattox, Management Plus, Inc., Albuquerque, NM, SVC Bulletin Spring 2016 “Adhesion, Interface Formation, and Stress in PVD Coatings”Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceArak UniversityArakIran

Personalised recommendations