Skip to main content
Log in

Synthesis of dense TiO2 nanoparticle multilayers using spin coating technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A stack of nine layers is prepared by sequential spun casting of commercially available colloidal TiO2 nanoparticles of average size of 10–15 nm. Scanning electron microscopy (SEM) is employed to investigate the surface morphology of the multilayers. SEM micrographs exhibit formation of highly uniform and dense TiO2 nanoparticle layers. The uniformity and density is found to be increasing with layer thickness. Structural characterization is carried out using X-ray diffraction (XRD) technique. XRD spectra indicate improvement in crystalline quality of all the layers with increasing layer thickness. All the layers are having mainly the anatase phase of TiO2. Optical characterization is carried out by UV–visible spectroscopy. The value of bandgap estimated on the basis of absorption coefficient is found to be 3.26 eV and approximately remains the same for the layers. The electrical characterization suggests that multilayer resistivity increases with increasing layer thickness. The good quality spin coated thin dense TiO2 layers have many applications in optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Alyamani, L. Tataroğlu, A. El MirAhmed, H. Al-Ghamdi, W.A. Dahman, F. Farooq, Yakuphanoğlu, Appl. Phys. A 297, 01–08 (2016)

    Google Scholar 

  2. V. Kılıç, Çelik, Appl. Phys. A 119, 783–790 (2015)

    Article  ADS  Google Scholar 

  3. L.S. Luca, J. Hsu, Optoelectron. Adv. Mater. 5, 835–840 (2003)

    Google Scholar 

  4. K.M. Reddy, S.V. Manorama, A.R. Reddy, Mater. Chem. Phys. 78, 239–245 (2002)

    Article  Google Scholar 

  5. M. Thakurdesai, T. Mohanty, J. John, T.K. Gundu Rao, P. Raychaudhuri, V. Bhattacharyya, D. Kanjilal, J Nano Sci. Nano Technol. 8, 4231–4237 (2008)

    Article  Google Scholar 

  6. J.H. Prosser, T. Brugarolas, S. Lee, A.J. Nolte, D. Lee, Nano Lett. 12, 5287–5291 (2012)

    Article  ADS  Google Scholar 

  7. Y. Bai, I. Mora-Seró, F. Angelis, J. Bisquert, P. Wang, Chem. Rev. 114, 10095–10130 (2014)

    Article  Google Scholar 

  8. S. Tan, A. Argondizzo, J. Ren, L. Liu, J. Zhao, H. Petek, Nat. Photon. 11, 806–812 (2017)

    Article  ADS  Google Scholar 

  9. W. Fan, Y. Bing, W. Zengbo, W. Limin, Sci. Adv. 2, 01–08 (2016)

    Article  Google Scholar 

  10. A. Maqusood, M.A. Majeed Khan, M.J. Akhtar, H. Alhadlaq, A. Alshamsan, Sci. Rep. 7, 01–14 (2017)

    Article  Google Scholar 

  11. J.J. Huang, S.P. Chiu, M.J. Wu, C. Hsu, Appl. Phys. A 971, 01–08 (2016)

    Google Scholar 

  12. M. Marichy, N. Bechelany, Pinna, Adv. Mater. 24, 1017–1032 (2012)

    Article  Google Scholar 

  13. S. Hwan, Y. Joon, Thin Solid Films 547, 91–94 (2013)

    Article  ADS  Google Scholar 

  14. Z.S. Wang, T. Sasaki, M. Muramatsu, Y. Ebina, T. Tanaka, M. Wataanbe, Chem. Mater. 15, 807–812 (2003)

    Article  Google Scholar 

  15. V.I. Klimov, A.A. Mikhailovsky, S. Xu, A. Malko, J.A. Hollingsworth, C.A. Leatherdale, M.G. Bawendi, Science 290, 314–317 (2000)

    Article  ADS  Google Scholar 

  16. J. Won, C.H. Wang, H.K. Jang, D.J. Choi, Appl. Phys. A 73, 595–600 (2001)

    Article  ADS  Google Scholar 

  17. R. Schaub, P. Thostrup, N. Lopez, E. Lægsgaard, I. Stensgaard, J.K. Nørskov, F. Besenbacher, Phys. Rev. Lett. 87, 01–09 (2001)

    Article  Google Scholar 

  18. L. Jing, B. Xin, F. Yuan, L. Xue, B. Wang, H. Fu, J. Phys. Chem. B 110, 17860–17865 (2006)

    Article  Google Scholar 

  19. M. Ben Rabeh, N. Khedmi, M.A. Fodha, M. Kanzari, Energy Proc. 44, 52–60 (2014)

    Article  Google Scholar 

  20. A.S. Hassanien, A.A. Aki, Superlattices Microstruct. 89, 153–169 (2016)

    Article  ADS  Google Scholar 

  21. M. Sta, M. Jlassi, M.F. Hajji, R. Boujmil, M. Jerbi, M. Kandyla, H. Kompitsas, Ezzaouia, J. Sol Gel Sci. Technol. 72, 421–427 (2014)

    Article  Google Scholar 

  22. S. Hassanienab, A.A. Akl, J. Alloys Compd. 648, 280–290 (2015)

    Article  Google Scholar 

  23. US Research Nanomaterials, Inc. http://www.us-nano.com/

  24. M.W. Zhuab, J.H. Xiaa, R.J. Honga, H. Abu Samraa, H. Huangb, T. Staedlera, J. Gongb, C. Sunb, X. Jiangab, J. Cryst. Growth 310, 816–823 (2008)

    Article  ADS  Google Scholar 

  25. L. Znaidia, G.J. Illiab, S. Benyahiaa, C. Sanchezb, A.V. Kanaev, Thin Solid Films 428, 257–262 (2003)

    Article  ADS  Google Scholar 

  26. X. Zhang, Y. He, M.L. Sushko, J. Liu, L. Luo, J.D. Yoreo, X. Scott, W. Chongmin, K. Rosso, Science, 356, 434–437, (2017)

    Article  ADS  Google Scholar 

  27. Y. Min, M. Akbulut, K. Kristiansen, Y.Golan,J. Israelachvili, Nat. Mater. 7, 527–538 (2008)

    Article  ADS  Google Scholar 

  28. Standard X-ray Diffraction Patterns: JCPDS data 00-064-0863

  29. W. Zeng, L. Tianmo, W. Zhongchang, T. Susumu, S. Mitsuhiro Saito, I. Yuichi, Mater. Trans. 51, 171–175 (2010)

    Article  Google Scholar 

  30. M. Thakurdesai, D. Kanjilal, V. Bhattacharya, Semicond. Sci. Technol. 24, 085023–085030 (2009)

    Article  ADS  Google Scholar 

  31. N. Saigal, V. Sugunakar, S.Ghosh, Appl. Phys. Lett. 108, 132105 (2016)

    Article  ADS  Google Scholar 

  32. A. Ruth, J.A. Young, Colloids Surf. A 279, 121–127 (2006)

    Article  Google Scholar 

  33. S. Survase, I. Sulania, H. Narayan, M. Thakurdesai, NIMB 387, 01–09 (2016)

    Article  ADS  Google Scholar 

  34. L. Yang, L. Jiang, W. Fu, A.W. Weimer, X. Hu, Y. Zhou, Appl. Phys. A 123, 416 (2017)

    Article  ADS  Google Scholar 

  35. T.M.W.J. Bandara, M. Dissanayake, I. Albinsson, B.E. Mellander, J. Power Sources 195, 3730–3734 (2010)

    Article  ADS  Google Scholar 

  36. L.A. DeSilva, P.K.D.D.P. Pitigala, A. Gaquere-Parker, R. Landry, J.E. Hasbun, V. Martin, T.M.W.J. Bandara, A.G.U. Perera, J. Mater. Sci. Mater. Electron. 28, 7724–7729 (2017)

    Article  Google Scholar 

  37. A. Burke, S. Ito, H. Snaith, U. Bach, J. Kwiatkowski, M. Grätzel, Nano Lett. 8, 977–981 (2008)

    Article  ADS  Google Scholar 

  38. L.A. DeSilva, R. Gadipalli, A. Donato, T.M.W.J. Bandara, Optik 157, 360–364 (2018)

    Article  ADS  Google Scholar 

  39. G. Thomas, Nature 389, 907–908 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Financial support from UWG SEEP and SRAP and COSM FRG programs are acknowledged. Support from the Faculty exchange program between the UWG (USA) and the Birla Collage, Kalyan (India) is acknowledged. Help rendered by Prof. Sandip Ghosh, Ms. Bhagyashri Chalke, TIFR, Mumbai, India is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Ajith DeSilva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeSilva, L.A., Thakurdesai, M., Bandara, T.M.W.J. et al. Synthesis of dense TiO2 nanoparticle multilayers using spin coating technique. Appl. Phys. A 124, 314 (2018). https://doi.org/10.1007/s00339-018-1735-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1735-x

Navigation