Skip to main content
Log in

Structural changes and magnetism in Bi1−xBa x FeO3 (x = 0, 0.1, 0.2, 0.3) nanopowders

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Bi1−xBa x FeO3 (x = 0, 0.1, 0.2 and 0.3) ceramic nanopowders were prepared by the ethylene glycol-based sol–gel method followed by heat treatment at 800 °C for 1 h. The effect of Ba2+ ions substitution on the structural and magnetic properties of the BiFeO3 (BFO) has been investigated. X-ray diffraction along with Rietveld refinement of Ba-substituted samples showed the presence of both rhombohedral (R3c) and pseudocubic (Pm3m) phases. Microstructural analysis confirmed the formation of homogeneous and nearly cubic nanoparticles. Result shows a reasonable enhancement in saturation magnetization of the substituted samples. Bi0.9Ba0.1FeO3 having 30% R3c and 70% Pm3m phases, show maximum saturation magnetization, i.e., 0.32 emu/g at room temperature. The magnetic properties of synthesized ceramics have been discussed in terms of FeO6 octahedra tilting with respect to body diagonal <111> of the pseudocubic system. By combining magnetic measurements with thermal analysis, it is shown that the substitution of Ba for Bi site causes an enhancement in magnetic transition temperature (TN).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N.A. Spaldin, M. Fiebig, The renaissance of magnetoelectric multiferroics. Science 309, 391 (2005)

    Article  Google Scholar 

  2. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759 (2006)

    Article  ADS  Google Scholar 

  3. R. Ramesh, N.A. Spaldin, Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21 (2007)

    Article  ADS  Google Scholar 

  4. Y.P. Wang, L. Zohu, M.F. Zhang, X.Y. Chen, J.M. Liu, Z.G. Liu, Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl. Phys. Lett. 84, 1731 (2004)

    Article  ADS  Google Scholar 

  5. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719 (2003)

    Article  ADS  Google Scholar 

  6. R. Seshadri, N.A. Hill, Visualizing the role of Bi 6 s “lone pairs” in the off-center distortion in ferromagnetic BiMnO3. Chem. Mater. 13, 2892 (2001)

    Article  Google Scholar 

  7. I. Dzyaloshinsky, A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241 (1958)

    Article  ADS  Google Scholar 

  8. T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91 (1960)

    Article  ADS  Google Scholar 

  9. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463 (2009)

    Article  Google Scholar 

  10. B. Ruette, S. Zvyagin, A.P. Pyatakov, A. Bush, J.F. Li, V.I. Belotelov, A.K. Zvezdin, D. Viehland, Magnetic-field-induced phase transition in BiFeO3 observed by high-field electron spin resonance: cycloidal to homogeneous spin order. Phys. Rev. B 69, 064114 (2004)

    Article  ADS  Google Scholar 

  11. J.F. Li, J.L. Wang, M. Wuttig, R. Ramesh, N. Wang, B. Ruette, A.P. Pyatakov, A.K. Zvezdin, D. Viehland, Dramatically enhanced polarization in (001), (101), and (111) BiFeO3 thin films due to epitaxial-induced transitions. Appl. Phys. Lett. 84, 5261 (2004)

    Article  ADS  Google Scholar 

  12. V.R. Palkar, D.C. Kundaliya, S.K. Malik, S. Bhattacharya, Magnetoelectricity at room temperature in the Bi0.9–xTb x La0.1FeO3 system. Phys. Rev. B 69, 212102 (2004)

    Article  ADS  Google Scholar 

  13. T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 7, 766 (2007)

    Article  ADS  Google Scholar 

  14. J. Zhang, Y.J. Wu, X.K. Chen, X.J. Chen, Structure evolution and magnetization enhancement of Bi 1 – xTbxFeO3. J. Phys. Chem. Solids 74, 849 (2013)

    Article  ADS  Google Scholar 

  15. S. Godara, B. Kumar, Effect of Ba–Nb co-doping on the structural, dielectric, magnetic and ferroelectric properties of BiFeO3 nanoparticles. Ceram. Int. 41, 6912 (2015)

    Article  Google Scholar 

  16. S. Karimi, I.M. Reaney, Y. Han, J. Pokorny, I. Sterianou, Crystal chemistry and domain structure of rare-earth doped BiFeO3 ceramics. J. Mater. Sci. 44, 5102 (2009)

    Article  ADS  Google Scholar 

  17. M. Rangi, A. Agarwal, S. Sanghi, R. Singh, S.S. Meena, A. Das, Crystal structure and magnetic properties of Bi0.8Ba0.2FeO3 (A = La, Ca, Sr, Ba) multiferroics using neutron diffraction and Mossbauer spectroscopy. AIP Adv. 4, 087121 (2014)

    Article  ADS  Google Scholar 

  18. S. Vijayanand, H.S. Potdar, P.A. Joy, Origin of high room temperature ferromagnetic moment of nanocrystalline multiferroic BiFeO3. Appl. Phys. Lett. 94, 182507 (2009)

    Article  ADS  Google Scholar 

  19. J.P. Gonjal, M.E.V. Castrejon, L. Fuentes, E. Moran, Microwave–hydrothermal synthesis of the multiferroic BiFeO3. Mater. Res. Bull. 44, 1734 (2009)

    Article  Google Scholar 

  20. G.S. Lotey, N.K. Verma, Structural, magnetic and electrical properties of Gd-doped BiFeO3 nanoparticles with reduced particle size. J. Nanopart. Res. 14(11), 742 (2012)

    Article  ADS  Google Scholar 

  21. S.M. Selbach, T. Tybell, M.A. Einarsrud, T. Grande, Size-dependent properties of multiferroic BiFeO3 nanoparticles. Chem. Mat. 19, 6478 (2007)

    Article  Google Scholar 

  22. J. Sliva, A. Reyes, H. Esparza, H. Camacho, L. Fuentes, BiFeO3: a review on synthesis, doping and crystal structure. Integr. Ferroelectr. 126, 47 (2011)

    Article  Google Scholar 

  23. C.H. Yang, D. Kan, I. Takeuchi, V. Nagarajan, J. Seidel, Doping BiFeO3: approaches and enhanced functionality. Phys. Chem. Chem. Phys. 14, 15953 (2012)

    Article  Google Scholar 

  24. V.A. Khomchenko, D.A. Kiselev, J.M. Vieira, L. Jian, A.L. Kholkin, A.M.L. Lopes, Y.G. Pogorelov, J.P. Araujo, M. Maglione, Effect of diamagnetic Ca, Sr, Pb, and Ba substitution on the crystal structure and multiferroic properties of the BiFeO3 perovskite. J. Appl. Phys. 103, 024105 (2008)

    Article  ADS  Google Scholar 

  25. R. Das, K. Mandal, Magnetic, ferroelectric and magnetoelectric properties of Ba-doped BiFeO3. J. Magn. Magn. Mater. 324, 1913 (2012)

    Article  ADS  Google Scholar 

  26. R. Das, S. Sharma, K. Mandal, Aliovalent Ba2+ doping: A way to reduce oxygen vacancy in multiferroic BiFeO3. J. Magn. Magn. Mater. 401, 129 (2016)

    Article  ADS  Google Scholar 

  27. J. Dzik, A. Lisinska-Czakaj, A. Zarycka, D. Czekaj, Study of phase and chemical composition of Bi1−xNdxFeO3 powders derived by pressureless sintering. Arch. Metall. Mater. 58, 1371 (2013)

    Article  Google Scholar 

  28. G. Biasotto, A.Z. Simões, C.R. Foschini, S.G. Antônio, M.A. Zaghete, J.A. Varela, A novel synthesis of perovskite bismuth ferrite nanoparticles. Process Appl Ceram 5, 171 (2011)

    Article  Google Scholar 

  29. J. Zhao, S. Liu, W. Zhang, Z. Liu, Z. Liu, Structural and magnetic properties of Er-doped BiFeO3 nanoparticles. J. Nanopart. Res. 15, 1969 (2013) (7pp)

    Article  ADS  Google Scholar 

  30. A. Anju, P. Agarwal, B. Aghamkar, V. Lal, Singh, Crystal symmetry and magnetism in Ti substituted Bi0.8 Ba0.2FeO3 ceramic. Ceram. Int. 43, 7408 (2017)

    Article  Google Scholar 

  31. S.M. Selbach, M.A. Einarsrud, T. Grande, On the thermodynamic stability of BiFeO3. Chem. Mater. 21, 169 (2009)

    Article  Google Scholar 

  32. P. Kumar, N. Shankhwar, A. Srinivasan, M. Kar, Oxygen octahedra distortion induced structural and magnetic phase transitions in Bi1−xCaxFe1−xMnxO3 ceramics. J. Appl. Phys. 117, 194103 (2015)

    Article  ADS  Google Scholar 

  33. H. Deng, M. Zhang, Q. Zhong, J. Wei, H. Yan, Effect of Mn doping on multiferroic properties in Bi0.8Ba0.2FeO3 ceramics. Ceram. Int. 40, 5869 (2014)

    Article  Google Scholar 

  34. P.C. Sati, M. Arora, S. Chauhan, M. Kumar, S. Chhoker, Structural, magnetic, vibrational and impedance properties of Pr and Ti codoped BiFeO3 multiferroic ceramics. Ceram. Int. 40, 7805 (2014)

    Article  Google Scholar 

  35. S. Karimi, I.M. Reaney, I. Levin, I. Sterianou, Nd-doped BiFeO3 ceramics with antipolar order. Appl. Phys. Lett. 94, 112903 (2009)

    Article  ADS  Google Scholar 

  36. A. Anju, P. Agarwal, V. Aghamkar, O. Singh, A. Singh, Kumar, Structural transitions and multiferrocity in Ba and Co substituted nanosized bismuth ferrite. J. Alloys Compd. 697, 333 (2017)

    Article  Google Scholar 

  37. A.M. Glazer, The classification of tilted octahedra in perovskites. Acta Cryst. B28, 3384 (1972)

    Article  Google Scholar 

  38. I.W. Chen, I.R. Ishizaki, K. Nihara, Design and Role of Grain Boundary in Ceramics, (Elsevier, New York, 1992), p. 254

    Google Scholar 

  39. Y. Yao, W. Liu, Y. Chan, C. Leung, C. Mak, Studies of rare-earth-doped BiFeO3 ceramics. Int. J. Appl. Ceram. Technol. 8, 1246 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Aghamkar.

Ethics declarations

Conflict of interest

Authors certify that there is no conflict of interest with any financial or non-financial organization regarding the material discussed in the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jindal, A., Agarwal, A. & Aghamkar, P. Structural changes and magnetism in Bi1−xBa x FeO3 (x = 0, 0.1, 0.2, 0.3) nanopowders. Appl. Phys. A 124, 323 (2018). https://doi.org/10.1007/s00339-018-1732-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1732-0

Navigation