Applied Physics A

, 124:307 | Cite as

Structural, optical and thermal characterization of PVC/SnO2 nanocomposites

Article
  • 78 Downloads

Abstract

The structural, optical, and thermal properties of PVC/SnO2 nanocomposites were investigated. XRD patterns were used to explore the structures of these prepared samples. Optical UV–Vis measurements were analyzed to calculate the spectroscopic optical constants of the prepared PVC/SnO2 nanocomposites. Both direct and indirect optical band gaps decreased with increasing SnO2 content. The refractive index, high frequency dielectric constant, plasma frequency, and optical conductivity values increased with SnO2. The single oscillator energy increased from 5.64 to 10.97 eV and the dispersion energy increased from 6.35 to 19.80 eV with the addition of SnO2. The other optical parameters such as optical moments, single oscillator strength, volume energy loss, and surface energy loss were calculated for different SnO2 concentrations. Raman spectra of the PVC/SnO2 nanocomposite films revealed the characteristic vibrational modes of PVC and surface phonon modes of SnO2. The thermal stability of PVC/SnO2 nanocomposite films was studied using DTA and thermogravimetric analysis. The glass transition (Tg) values abruptly changed from 46 °C for PVC to an average value of 59 °C for the polymer films doped with 2.0, 4.0, and 6.0 wt% SnO2. The weight loss decreased as the SnO2 concentration increased in the temperature range of 350–500 °C, corresponding to enhanced thermal stability.

References

  1. 1.
    S. Ren, L.Y. Chang, S.K. Lim, J. Zhao, M. Smith, N. Zhao, V. Bulović, M. Bawendi, S. Gradečak, Nano Lett. 11(9), 3998 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    C.Y. Kwong, W.C.H. Choy, A.B. Djurišić, P.C. Chui, K.W. Cheng, W.K. Chan, Nanotechnology 15(9), 1156 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    B. Pradhan, K. Setyowati, H. Liu, D.H. Waldeck, J. Chen, Nano Lett. 8(4), 1142 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    E. Holder, N. Tessler, A.L. Rogach, J. Mater. Chem. 18(10), 1064 (2008)CrossRefGoogle Scholar
  5. 5.
    H. Bai, G. Shi, Sensors 7(3), 267 (2007)CrossRefGoogle Scholar
  6. 6.
    G. Broza, K. Piszczek, K. Schulte, T. Sterzynski, Compos. Sci. Technol. 67(5), 890 (2007)CrossRefGoogle Scholar
  7. 7.
    T. Sterzyński, J. Tomaszewska, K. Piszczek, K. Skórczewska, Compos. Sci. Technol. 70(6), 966 (2010)CrossRefGoogle Scholar
  8. 8.
    J.N. Coleman, U. Khan, Y.K. Gun’ko, Adv. Mater. 18(6), 689 (2006)CrossRefGoogle Scholar
  9. 9.
    T. Zhao, C. Hou, H. Zhang, R. Zhu, S. She, J. Wang, T. Li, Z. Liu, B. Wei, Sci. Rep. 4, 5619 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    G.M. Joshi, K. Deshmukh, J. Electron. Mater. 43(4), 1161 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    N.M. Ahmed, S.H. Mansour, S.L. Abd-El-Messieh, Mater. Design. 31(9), 4312 (2010)CrossRefGoogle Scholar
  12. 12.
    I.S. Elashmawi, N.A. Hakeem, L.K. Marei, F.F. Hanna, Pysica B 405(19), 4163 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    A. Olad, R. Nosrati, Prog. Org. Coat. 76(1), 113 (2013)CrossRefGoogle Scholar
  14. 14.
    A. Ebnalwaled, A. Thabet, Synth Metal 220, 374 (2016)CrossRefGoogle Scholar
  15. 15.
    M. Sayed, W.M. Morsi, Polym. Comp. 34(12), 2031 (2013)CrossRefGoogle Scholar
  16. 16.
    O. Chiscan, I. Dumitru, V. Tura, H. Chiriac, A. Stancu, IEEE Trans. Magn. 47(11), 4511 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    S.M. Paek, E. Yoo, I. Honma, Nano Lett. 9(1), 72 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    E.R. Leite, I.T. Weber, E. Longo, J.A. Varela, Adv. Mater. 12(13), 965 (2000)CrossRefGoogle Scholar
  19. 19.
    J. Xu, N. Tamaki, N. Miura, S.E.N.S.O.R. Yamazoe, Actuat B Chem. 3(2), 147 (1991)CrossRefGoogle Scholar
  20. 20.
    A.H. Salama, M. El-Hofy, Y.S. Rammah, M. Elkhatib, Nanosci. Nanotech. 6(4), 045013‏ (2015)Google Scholar
  21. 21.
    T.A. Taha, J. Mater. Sci. Mater. Electron. 28(16), 12108 (2017)CrossRefGoogle Scholar
  22. 22.
    M.A. Da Silva, M.G.A. Vieira, A.C.G. Maçumoto, M.M. Beppu, Polym. Test. 30(5), 478 (2011)CrossRefGoogle Scholar
  23. 23.
    V.D. Mote, Y. Purushotham, B.N. Dole, J. Theor. Appl. Phys. 6(1), 6 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    M. Hasan, A.N. Banerjee, M. Lee, J. Ind. Eng. Chem. 21, 828 (2015)CrossRefGoogle Scholar
  25. 25.
    S. El-Rabaie, T.A. Taha, A.A. Higazy, Mater. Sci. Semicond. Process. 30, 631 (2015)CrossRefGoogle Scholar
  26. 26.
    J.I. Pankove, Optical Processes in Semiconductors. (Dover Publications, New York, USA, 2010)Google Scholar
  27. 27.
    S. El-Rabaie, T.A. Taha, A.A. Higazy, Mater. Sci. Semicond. Process. 34, 88 (2015)CrossRefGoogle Scholar
  28. 28.
    T.A. Taha, A.S. Abouhaswa, J. Mater. Sci. Mater. Electron. (2018).  https://doi.org/10.1007/s10854-018-8816-7 Google Scholar
  29. 29.
    F. Urbach, Phys. Rev. 92(5), 1324 (1953)ADSCrossRefGoogle Scholar
  30. 30.
    S. El-Rabaie, T.A. Taha, A.A. Higazy, Physica B 432, 40 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    S. El-Rabaie, T.A. Taha, A.A. Higazy, Appl. Nanosci. 4(2), 219 (2014)CrossRefGoogle Scholar
  32. 32.
    G. Fanchini, A. Tagliaferro, Appl. Phys. Lett. 85(5), 730 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    T.A. Taha, Y.S. Rammah, J. Mater. Sci. Mater. Electron. 27(2), 1384 (2016)CrossRefGoogle Scholar
  34. 34.
    A.M. Sayed, W.M. Morsi, Polym. Comp. 34(12), 2031 (2013)CrossRefGoogle Scholar
  35. 35.
    O.G. Abdullah, D.A. Tahir, K. Kadir, J. Mater. Sci. Mater. Electron. 26(9), 6939 (2015)CrossRefGoogle Scholar
  36. 36.
    S.H. Wemple, M. DiDomenico Jr, Phys. Rev. B 3(4), 1338 (1971)ADSCrossRefGoogle Scholar
  37. 37.
    S.H. Wemple, Phys. Rev. B 7(8), 3767 (1973)ADSCrossRefGoogle Scholar
  38. 38.
    F. Yakuphanoglu, A. Cukurovali, I. Yilmaz, Physica B 351(1), 53 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    O.A. Azim, M.M. Abdel-Aziz, I.S. Yahia, Appl. Surf. Sci. 255(9), 4829 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    F. Yakuphanoglu, H. Erten, Opt. Appl. 35(4), 969 (2005)Google Scholar
  41. 41.
    A.M. El Sayed, S. El-Sayed, W.M. Morsi, S. Mahrous, A. Hassen, Polym. Comp. 35(9), 1842 (2014)CrossRefGoogle Scholar
  42. 42.
    V.B. Bhavsar, D. Jha, J. Indian, Pure Appl. Phys. 54(2), 105 (2016)Google Scholar
  43. 43.
    N.M. Saadatabadi, M.R. Nateghi, M.B. Zarandi, Polym. Sci. Ser. A+ 57(4), 480 (2015)CrossRefGoogle Scholar
  44. 44.
    S. Sarkar, N.S. Das, K.K. Chattopadhyay, Solid State Sci. 33, 58 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    M. Conradi, M. Zorko, I. Jerman, B. Orel, I. Verpoest, Polym. Eng. Sci. 53(7), 1448 (2013)CrossRefGoogle Scholar
  46. 46.
    M.E.R. Robinson, D.I. Bower, W.F. Maddams, Polymer 19(7), 773 (1978)CrossRefGoogle Scholar
  47. 47.
    A.K. Ojha, S.K. Srivastava, N. Peica, S. Schlucker, W. Kiefer, B.P. Asthana, J. Mol. Struct. 735–736, 349 (2005)CrossRefGoogle Scholar
  48. 48.
    P.S.R. Prasad, K.S. Prasad, N.K. Thakur, Spectrochim Acta A 68(4), 1096 (2007)ADSCrossRefGoogle Scholar
  49. 49.
    M.A. Camacho-López, J.R. Galeana-Camacho, A. Esparza-García, C. Sánchez-Pérez, C.M. Julien, Superficies y vacío 26(3), 95 (2013)Google Scholar
  50. 50.
    J. Zuo, C. Xu, X. Liu, C. Wang, C. Wang, Y. Hu, Y. Qian, J. Appl. Phys. 75(3), 1835 (1994)ADSCrossRefGoogle Scholar
  51. 51.
    P. Jia, L. Hu, G. Feng, C. Bo, J. Zhou, M. Zhang, Y. Zhou, RSC Adv. 7(2), 897 (2017)CrossRefGoogle Scholar
  52. 52.
    Y. Kayyarapu, H.B. Kumar, O. Mohommad, R. Neeruganti, Chekuri, Mater. Res. 19(5), 1167 (2016)CrossRefGoogle Scholar
  53. 53.
    M. Hasan, M. Lee, Prog. Nat. Sci. Mater. Int. 24(6), 579 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics and Engineering Mathematics Department, Faculty of Electronic EngineeringMenoufia UniversityMenoufEgypt
  2. 2.Physics Department, Faculty of ScienceMenoufia UniversityShebin El-KoomEgypt
  3. 3.Basic Science DepartmentEl-Gezeera High Institute for Engineering and TechnologyEl-MokatamEgypt

Personalised recommendations