Applied Physics A

, 124:292 | Cite as

Band shift of 2D transition-metal dichalcogenide alloys: size and composition effects

Article
  • 116 Downloads

Abstract

Band engineering of 2D transition-metal dichalcogenides (2D-TMDs) is a vital task for their applications in electronic and optoelectronic nanodevices. In this study, we investigate the joint effect from size and composition contributions on the band shift of 2D-TMD alloys in terms of atomic bond relaxation consideration. A theoretical model is proposed to pursue the underlying mechanism, which can connect the band offset with the atomic bonding identities in the 2D-TMD alloys. We reveal that the bandgap of 2D-TMD alloys presents a bowing shape owing to the size-dependent interaction among atoms and shows blue shift or red shift due to different intermixing of components. It is demonstrated that both size and composition can be performed as the useful methods to modulate the band shift, which suggests an effective way to realize the desirable properties of 2D-TMD alloys.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. 11574080).

References

  1. 1.
    O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotech. 8, 497–501 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    X.D. Duan, C. Wang, A.L. Pan, R.Q. Yu, X.F. Duan, Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges. Chem. Soc. Rev. 44, 8859–8876 (2015)CrossRefGoogle Scholar
  3. 3.
    K.S. Novoselov, A. Mishchenko, A. Carvalho, A. H. Castro Neto, 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016)CrossRefGoogle Scholar
  4. 4.
    A. Kutana, E.S. Penev, B.I. Yakobson, Engineering electronic properties of layered transition-metal dichalcogenide compounds through alloying. Nanoscale 6, 5820–5825 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    W.T. Zhang, X.D. Li, T.T. Jiang, J. Song, Y. Lin, L.X. Zhu, X.L. Xu, CVD synthesis of Mo(1–x)WxS2 and MoS2(1–x)Se2x alloy monolayers aimed at tuning the bandgap of molybdenum disulfide. Nanoscale 7, 13554–13560 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    L.M. Xie, Two-dimensional transition-metal dichalcogenide alloys: Preparation, characterization and applications. Nanoscale 7, 18392–18401 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    C.L. Tan, W. Zhao, A. Chaturvedi, Z. Fei, Z.Y. Zeng, J.Z. Chen, Y. Huang, P. Ercius, Z.M. Luo, X.Y. Qi, B. Chen, Z.C. Lai, B. Li, X. Zhang, J. Yang, Y. Zong, C.H. Jin, H.M. Zheng, C. Kloc, H. Zhang, Preparation of single-layer MoS2xSe2(1–x) and MoxW1–xS2 nanosheets with high-concentration metallic 1T phase. Small 12, 1866–1874 (2016)CrossRefGoogle Scholar
  8. 8.
    Q.L. Feng, Y.M. Zhu, J.H. Hong, M. Zhang, W.J. Duan, N.N. Mao, J.X. Wu, H. Xu, F.L. Dong, F. Lin, C.H. Jin, C.M. Wang, J. Zhang, L.M. Xie, Growth of large-area 2D MoS2(1–x)Se2x semiconductor alloys. Adv. Mater. 26, 2648–2653 (2014)CrossRefGoogle Scholar
  9. 9.
    Q.L. Feng, N.N. Mao, J.X. Wu, H. Xu, C.M. Wang, J. Zhang, L.M. Xie, Growth of MoS2(1–x)Se2x (x = 0.41 ~ 1.00) monolayer alloys with controlled morphology by physical vapor deposition. ACS Nano 9, 7450–7455 (2015)CrossRefGoogle Scholar
  10. 10.
    F. Ersan, G. Gökoglu, E. Aktürk, Adsorption and diffusion of lithium on monolayer transition metal dichalcogenides (MoS2(1–x)Se2x) alloys. J. Phys. Chem. C 119, 28648–28653 (2015)CrossRefGoogle Scholar
  11. 11.
    L. Yang, Q. Fu, W.H. Wang, J. Huang, J.L. Huang, J.Y. Zhang, B. Xiang, Large-area synthesis of monolayered MoS2(1–x)Se2x with a tunable bandgap and its enhanced electrochemical catalytic activity. Nanoscale 7, 10490–10497 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Y.J. Gong, Z. Liu, A.R. Lupini, G. Shi, J.H. Lin, S. Najmaei, Z. Lin, A.L. Elías, A. Berkdemir, G. You, H. Terrones, M. Terrones, R. Vajtai, S.T. Pantelides, S.J. Pennycook, J. Lou, W. Zhou, P.M. Ajayan, Bandgap engineering and layer-by-layer mapping of selenium-doped molybdenum sisulfide. Nano Lett. 14, 442–449 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Y.J. Wu, P.H. Wu, J. Jadczak, Y.S. Huang, C.H. Ho, H.P. Hsu, K.K. Tiong, Piezoreflectance study of near band edge excitonic-transitions of mixed-layered crystal Mo(SxSe1–x)2 solid solutions. J. Appl. Phys. 115, 223508 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    H.L. Li, X.D. Duan, X.P. Wu, X.J. Zhuang, H. Zhou, Q.L. Zhang, X.L. Zhu, W. Hu, P.Y. Ren, P.F. Guo, L. Ma, X.P. Fan, X.X. Wang, J.Y. Xu, A.L. Pan, X.F. Duan, Growth of alloy MoS2xSe2(1–x) nanosheets with fully tunable chemical compositions and optical properties. J. Am. Chem. Soc. 136, 3756–3759 (2014)CrossRefGoogle Scholar
  15. 15.
    H.L. Li, Q.L. Zhang, X.D. Duan, X.P. Wu, X.P. Fan, X.L. Zhu, X.J. Zhuang, W. Hu, H. Zhou, A.L. Pan, X.F. Duan, Lateral growth of composition graded atomic layer MoS2(1–x)Se2x nanosheets. J. Am. Chem. Soc. 137, 5284–5287 (2015)CrossRefGoogle Scholar
  16. 16.
    H.L. Li, X.P. Wu, H.J. Liu, B.Y. Zheng, Q.L. Zhang, X.L. Zhu, Z. Wei, X.Z. Zhuang, H. Zhou, W.X. Tang, X.F. Duan, A.L. Pan, Composition-modulated two-dimensional semiconductor lateral heterostructures via layer-selected atomic substitution. ACS Nano 11, 961–967 (2017)CrossRefGoogle Scholar
  17. 17.
    Q. Fu, L. Yang, W.H. Wang, A. Han, J. Huang, P.W. Du, Z.Y. Fan, J.Y. Zhang, B. Xiang, Synthesis and enhanced electrochemical catalytic performance of monolayer WS2(1–x)Se2x with a tunable bandgap. Adv. Mater. 27, 4732–4738 (2015)CrossRefGoogle Scholar
  18. 18.
    J. Huang, W.H. Wang, Q. Fu, L. Yang, K. Zhang, J.Y. Zhang, B. Xiang, Stable electrical performance observed in large-scale monolayer WSe2(1–x)S2x with tunable bandgap. Nanotechnology 27, 13LT01 (2016)CrossRefGoogle Scholar
  19. 19.
    X.D. Duan, C. Wang, Z. Fan, G.L. Hao, L.Z. Kou, U. Halim, H.L. Li, X.P. Wu, Y.C. Wang, J.H. Jiang, A.L. Pan, Y. Huang, R.Q. Yu, X.F. Duan, Synthesis of WS2xSe2 – 2x alloy nanosheets with composition-tunable electronic properties. Nano Lett. 16, 264–269 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Y.F. Chen, J.Y. Xi, D.O. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z.G. Shuai, Y.S. Huang, L.M. Xie, Tunable bandgap photoluminescence from atomically thin transition-metal dichalcogenide alloys. ACS Nano 7, 4610–4616 (2013)CrossRefGoogle Scholar
  21. 21.
    H.F. Liu, K.K. Ansah Antwi, S. Chua, D. Chi, Vapor-phase growth and characterization of Mo1 – xWxS2 (0 ≤ x ≤ 1) atomic layers on 2-inch sapphire substrates. Nanoscale 6, 624–629 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    Y. Kobayashi, S. Mori, Y. Maniwa, Y. Miyata, Bandgap-tunable lateral and vertical heterostructures based on monolayer Mo1 – xWxS2 alloys. Nano Res. 8, 3261–3271 (2015)CrossRefGoogle Scholar
  23. 23.
    J. Song, G.H. Ryu, S.J. Lee, S. Sim, C. Lee, T. Choi, H. Jung, Y. Kim, Z. Lee, J. Myoung, C. Dussarrat, C. Lansalot-Matras, J. Park, H. Choi, H. Kim, Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition- controlled multilayer. Nat. Commun. 6, 7817 (2015)CrossRefGoogle Scholar
  24. 24.
    Z.Q. Wang, P. Liu, Y. Ito, S.C. Ning, Y.W. Tan, T. Fujita, A. Hirata, M.W. Chen, Chemical vapor deposition of monolayer Mo1 – xWxS2 crystals with tunable bandgaps. Sci. Rep. 6, 21536 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    S.J. Zheng, L.F. Sun, T.T. Yin, A.M. Dubrovkin, F.C. Liu, Z. Liu, Z.X. Shen, H.J. Fan, Monolayers of WxMo1–xS2 alloy heterostructure with In-plane composition variations. Appl. Phys. Lett. 106, 063113 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    M. Zhang, J.X. Wu, Y.M. Zhu, D.O. Dumcenco, J.H. Hong, N.N. Mao, S.B. Deng, Y.F. Chen, Y.L. Yang, C.H. Jin, S.H. Chaki, Y.S. Huang, J. Zhang, L.M. Xie, Two-dimensional molybdenum tungsten diselenide alloys: Photoluminescence, Raman scattering, and electrical transport. ACS Nano 8, 7130–7137 (2014)CrossRefGoogle Scholar
  27. 27.
    S. Tongay, D.S. Narang, J. Kang, W. Fan, C. Ko, A.V. Luce, K.X. Wang, J. Suh, K.D. Patel, V.M. Pathak, J.B. Li, J.Q. Wu, Two-dimensional semiconductor alloys: Monolayer Mo1 – xWxSe2. Appl. Phys. Lett. 104, 012101 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    L.Y. Gan, Q.Y. Zhang, Y.J. Zhao, Y.C. Cheng, U. Schwingenschlögl, Order-disorder phase transitions in the two-dimensional semiconducting transition metal dichalcogenide alloys Mo1 – xWxX2 (X = S, Se, and Te). Sci. Rep. 4, 6691 (2014)CrossRefGoogle Scholar
  29. 29.
    M. Kang, B. Kim, S.H. Ryu, S.W. Jung, J. Kim, L. Moreschini, C. Jozwiak, E. Rotenberg, A. Bostwick, K.S. Kim, Universal mechanism of band-gap engineering in transition-metal dichalcogenides. Nano Lett. 17, 1610–1615 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    Y.F. Zhu, X.Y. Lang, Q. Jiang, The effect of alloying on the bandgap energy of nanoscaled semiconductor alloys. Adv. Funct. Mater. 18, 1422–1429 (2008)CrossRefGoogle Scholar
  31. 31.
    G. Guisbiers, G. Abudukelimu, M. Wautelet, L. Buchaillot, Size, Shape, composition, and segregation tuning of InGaAs thermo-optical properties. J. Phys. Chem. C 112, 17889–17892 (2008)CrossRefGoogle Scholar
  32. 32.
    Y. Wang, G. Ouyang, L.L. Wang, L.M. Tang, D.S. Tang, C. Q. Sun, Size- and composition-induced bandgap change of nanostructured compound of II–VI semiconductors. Chem. Phys. Lett. 463, 383–386 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    Y.C. Huang, X. Chen, D.M. Zhou, H. Liu, C. Wang, J.Y. Du, L.X. Ning, S.F. Wang, Stabilities, electronic and optical properties of SnSe2(1–x)S2x alloys: A first-principle study. J. Phys. Chem. C 120, 5839–5847 (2016)CrossRefGoogle Scholar
  34. 34.
    J. Kang, S. Tongay, J.B. Li, J.Q. Wu, Monolayer semiconducting transition metal dichalcogenide alloys: Stability and band bowing. J. Appl. Phys. 113, 143703 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    B. Rajbanshi, S. Sarkar, P. Sarkar, The electronic and optical properties of MoS2(1–x)Se2x and MoS2(1–x)Te2x monolayers. Phys. Chem. Chem. Phys. 17, 26166–26174 (2015)CrossRefGoogle Scholar
  36. 36.
    X.L. Wei, H. Zhang, G.C. Guo, X.B. Li, W.M. Lau, L.M. Liu, Modulating the atomic and electronic structures through alloying and heterostructure of single-layer MoS2. J. Mater. Chem. A 2, 2101–2109 (2014)CrossRefGoogle Scholar
  37. 37.
    C. Q. Sun, Size dependence of nanostructures: Impact of bond order deficiency. Prog. Solid State Chem. 35, 1–159 (2007)CrossRefGoogle Scholar
  38. 38.
    G. Ouyang, C.X. Wang, G.W. Yang, Surface energy of nanostructural materials with negative curvature and related size effects. Chem. Rev. 109, 4221–4247 (2009)CrossRefGoogle Scholar
  39. 39.
    A. Zhang, Z.M. Zhu, Y. He, G. Ouyang, Structure stabilities and transitions in polyhedral metal nanocrystals: An atomic-bond relaxation approach. Appl. Phys. Lett. 100, 171912 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    Y. He, W.B. Yu, G. Ouyang, Effect of stepped substrates on the interfacial adhesion properties of graphene membranes. Phys. Chem. Chem. Phys. 16, 11390–11397 (2014)CrossRefGoogle Scholar
  41. 41.
    L. Pauling, Atomic radii and interatomic distances in metals. J. Am. Chem. Soc. 69, 542–553 (1947)CrossRefGoogle Scholar
  42. 42.
    W.J. Huang, R. Sun, J. Tao, L.D. Menard, R.G. Nuzzo, J.M. Zuo, Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. Nat. Mater. 7, 308–313 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    H.B. Nielsen, D. L. Adams, r-factor analysis of the effect of non-structural parameters in LEED, applied to Al(111). J. Phys. C 15, 615 (1982)ADSCrossRefGoogle Scholar
  44. 44.
    P. Staikov, T.S. Rahman, Multilayer relaxations and stresses on Mg surfaces. Phys. Rev. B 60, 15613 (1999)ADSCrossRefGoogle Scholar
  45. 45.
    M.A. Boles, D. Ling, T. Hyeon, D.V. Talapin, The surface science of nanocrystals. Nat. Mater. 15, 141–153 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    V.M. Goldschmidt, Ber. Deutsch. Chem. Ges. 60, 1270 (1927)Google Scholar
  47. 47.
    Y.F. Li, Z. Zhou, S.B. Zhang, Z.F. Chen, MoS2 nanoribbons: High stability and unusual electronic and magnetic properties. J. Am. Chem. Soc. 130, 16739 (2008)CrossRefGoogle Scholar
  48. 48.
    Y.H. Liu, Y. Wan, M.L. Bo, J.X. Liu, X.X. Yang, Y.L. Huang, C. Q. Sun, Thermally driven (Mo, W)-(S2, Se2) phonon and photon energy relaxation dynamics. J. Phys. Chem. C 119, 25071 (2015)CrossRefGoogle Scholar
  49. 49.
    Z.M. Zhu, A. Zhang, G. Ouyang, G.W. Yang, Edge effect on bandgap shift in Si nanowires with polygonal cross-sections. Appl. Phys. Lett. 98, 263112 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    L.H. Liang, D. Liu, Q. Jiang, Size-dependent continuous binary solution phase diagram. Nanotechnology 14, 438–442 (2003)ADSCrossRefGoogle Scholar
  51. 51.
    C.Q. Sun, B.K. Tay, S.P. Lau, X.W. Sun, X.T. Zeng, S. Li, H.L. Bai, H. Liu, Z.H. Liu, E.Y. Jiang, Bond contraction and lone pair interaction at nitride surfaces. J. Appl. Phys. 90, 2615 (2001)ADSCrossRefGoogle Scholar
  52. 52.
    G. Ouyang, X. Tan, C.X. Wang, G.W. Yang, Solid solubility limit in alloying nanoparticles. Nanotechnology 17, 4257–4262 (2006)ADSCrossRefGoogle Scholar
  53. 53.
    K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D.R.T. Zahn, S.M. de Vasconcellos, R. Bratschitsch, Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 21, 4908–4916 (2013)ADSCrossRefGoogle Scholar
  55. 55.
    W.J. Zhao, Z. Ghorannevis, L.Q. Chu, M. Toh, C. Kloc, P.H. Tan, G. Eda, Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7, 791–797 (2013)CrossRefGoogle Scholar
  56. 56.
    G. Lucovsky, R.M. White, J.A. Benda, J.F. Revelli, Infrared-reflectance spectra of layered group-IV and group-VI transition-metal dichalcogenides. Phys. Rev. B 7, 3859 (1973)ADSCrossRefGoogle Scholar
  57. 57.
    J. Mann, Q. Ma, P.M. Odenthal, M. Isarraraz, D. Le, E. Preciado, D. Barroso, K. Yamaguchi, G.S. Palacio, A. Nguyen, T. Tran, M. Wurch, A. Nguyen, V. Klee, S. Bobek, D. Sun, T.F. Heinz, T.S. Rahman, R. Kawakami, L. Bartels, 2-dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1–x)Se2x monolayers. Adv. Mater. 26, 1399–1404 (2014)CrossRefGoogle Scholar
  58. 58.
    D.O. Dumcenco, H. Kobayashi, Z. Liu, Y.-S. Huang, K. Suenaga, Visualization and quantification of transition metal atomic mixing in Mo1– xWxS2 single layers. Nat. Commun. 4, 1351 (2013)CrossRefGoogle Scholar
  59. 59.
    M. Pandey, A. Vojvodic, K.S. Thygesen, K.W. Jacobsen, Two-dimensional metal dichalcogenides and oxides for hydrogen evolution: a computational screening approach. J. Phys. Chem. Lett. 6, 1577–1585 (2015)CrossRefGoogle Scholar
  60. 60.
    S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.-S. Huang, C.-H. Ho, J. Yan, D. Frank Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F.M. Peeters, J. Wu, Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 5, 3252 (2014)CrossRefGoogle Scholar
  61. 61.
    H.-X. Zhong, S. Gao, J.-J. Shi, L. Yang, Quasiparticle band gaps, excitonic effects, and anisotropic optical properties of the monolayer distorted diamond-chain structures ReS2 and ReSe2. Phys. Rev. B 92, 115438 (2015)ADSCrossRefGoogle Scholar
  62. 62.
    T.L. Tan, M.-F. Ng, G. Eda, Stable monolayer transition metal dichalcogenide ordered alloys with tunable electronic properties. J. Phys. Chem. C 120, 2501 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications (SICQEA)Hunan Normal UniversityChangshaChina

Personalised recommendations