Skip to main content
Log in

Band shift of 2D transition-metal dichalcogenide alloys: size and composition effects

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Band engineering of 2D transition-metal dichalcogenides (2D-TMDs) is a vital task for their applications in electronic and optoelectronic nanodevices. In this study, we investigate the joint effect from size and composition contributions on the band shift of 2D-TMD alloys in terms of atomic bond relaxation consideration. A theoretical model is proposed to pursue the underlying mechanism, which can connect the band offset with the atomic bonding identities in the 2D-TMD alloys. We reveal that the bandgap of 2D-TMD alloys presents a bowing shape owing to the size-dependent interaction among atoms and shows blue shift or red shift due to different intermixing of components. It is demonstrated that both size and composition can be performed as the useful methods to modulate the band shift, which suggests an effective way to realize the desirable properties of 2D-TMD alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotech. 8, 497–501 (2013)

    Article  ADS  Google Scholar 

  2. X.D. Duan, C. Wang, A.L. Pan, R.Q. Yu, X.F. Duan, Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges. Chem. Soc. Rev. 44, 8859–8876 (2015)

    Article  Google Scholar 

  3. K.S. Novoselov, A. Mishchenko, A. Carvalho, A. H. Castro Neto, 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016)

    Article  Google Scholar 

  4. A. Kutana, E.S. Penev, B.I. Yakobson, Engineering electronic properties of layered transition-metal dichalcogenide compounds through alloying. Nanoscale 6, 5820–5825 (2014)

    Article  ADS  Google Scholar 

  5. W.T. Zhang, X.D. Li, T.T. Jiang, J. Song, Y. Lin, L.X. Zhu, X.L. Xu, CVD synthesis of Mo(1–x)W x S2 and MoS2(1–x)Se2x alloy monolayers aimed at tuning the bandgap of molybdenum disulfide. Nanoscale 7, 13554–13560 (2015)

    Article  ADS  Google Scholar 

  6. L.M. Xie, Two-dimensional transition-metal dichalcogenide alloys: Preparation, characterization and applications. Nanoscale 7, 18392–18401 (2015)

    Article  ADS  Google Scholar 

  7. C.L. Tan, W. Zhao, A. Chaturvedi, Z. Fei, Z.Y. Zeng, J.Z. Chen, Y. Huang, P. Ercius, Z.M. Luo, X.Y. Qi, B. Chen, Z.C. Lai, B. Li, X. Zhang, J. Yang, Y. Zong, C.H. Jin, H.M. Zheng, C. Kloc, H. Zhang, Preparation of single-layer MoS2xSe2(1–x) and Mo x W1–xS2 nanosheets with high-concentration metallic 1T phase. Small 12, 1866–1874 (2016)

    Article  Google Scholar 

  8. Q.L. Feng, Y.M. Zhu, J.H. Hong, M. Zhang, W.J. Duan, N.N. Mao, J.X. Wu, H. Xu, F.L. Dong, F. Lin, C.H. Jin, C.M. Wang, J. Zhang, L.M. Xie, Growth of large-area 2D MoS2(1–x)Se2x semiconductor alloys. Adv. Mater. 26, 2648–2653 (2014)

    Article  Google Scholar 

  9. Q.L. Feng, N.N. Mao, J.X. Wu, H. Xu, C.M. Wang, J. Zhang, L.M. Xie, Growth of MoS2(1–x)Se2x (x = 0.41 ~ 1.00) monolayer alloys with controlled morphology by physical vapor deposition. ACS Nano 9, 7450–7455 (2015)

    Article  Google Scholar 

  10. F. Ersan, G. Gökoglu, E. Aktürk, Adsorption and diffusion of lithium on monolayer transition metal dichalcogenides (MoS2(1–x)Se2x) alloys. J. Phys. Chem. C 119, 28648–28653 (2015)

    Article  Google Scholar 

  11. L. Yang, Q. Fu, W.H. Wang, J. Huang, J.L. Huang, J.Y. Zhang, B. Xiang, Large-area synthesis of monolayered MoS2(1–x)Se2x with a tunable bandgap and its enhanced electrochemical catalytic activity. Nanoscale 7, 10490–10497 (2015)

    Article  ADS  Google Scholar 

  12. Y.J. Gong, Z. Liu, A.R. Lupini, G. Shi, J.H. Lin, S. Najmaei, Z. Lin, A.L. Elías, A. Berkdemir, G. You, H. Terrones, M. Terrones, R. Vajtai, S.T. Pantelides, S.J. Pennycook, J. Lou, W. Zhou, P.M. Ajayan, Bandgap engineering and layer-by-layer mapping of selenium-doped molybdenum sisulfide. Nano Lett. 14, 442–449 (2014)

    Article  ADS  Google Scholar 

  13. Y.J. Wu, P.H. Wu, J. Jadczak, Y.S. Huang, C.H. Ho, H.P. Hsu, K.K. Tiong, Piezoreflectance study of near band edge excitonic-transitions of mixed-layered crystal Mo(S x Se1–x)2 solid solutions. J. Appl. Phys. 115, 223508 (2014)

    Article  ADS  Google Scholar 

  14. H.L. Li, X.D. Duan, X.P. Wu, X.J. Zhuang, H. Zhou, Q.L. Zhang, X.L. Zhu, W. Hu, P.Y. Ren, P.F. Guo, L. Ma, X.P. Fan, X.X. Wang, J.Y. Xu, A.L. Pan, X.F. Duan, Growth of alloy MoS2xSe2(1–x) nanosheets with fully tunable chemical compositions and optical properties. J. Am. Chem. Soc. 136, 3756–3759 (2014)

    Article  Google Scholar 

  15. H.L. Li, Q.L. Zhang, X.D. Duan, X.P. Wu, X.P. Fan, X.L. Zhu, X.J. Zhuang, W. Hu, H. Zhou, A.L. Pan, X.F. Duan, Lateral growth of composition graded atomic layer MoS2(1–x)Se2x nanosheets. J. Am. Chem. Soc. 137, 5284–5287 (2015)

    Article  Google Scholar 

  16. H.L. Li, X.P. Wu, H.J. Liu, B.Y. Zheng, Q.L. Zhang, X.L. Zhu, Z. Wei, X.Z. Zhuang, H. Zhou, W.X. Tang, X.F. Duan, A.L. Pan, Composition-modulated two-dimensional semiconductor lateral heterostructures via layer-selected atomic substitution. ACS Nano 11, 961–967 (2017)

    Article  Google Scholar 

  17. Q. Fu, L. Yang, W.H. Wang, A. Han, J. Huang, P.W. Du, Z.Y. Fan, J.Y. Zhang, B. Xiang, Synthesis and enhanced electrochemical catalytic performance of monolayer WS2(1–x)Se2x with a tunable bandgap. Adv. Mater. 27, 4732–4738 (2015)

    Article  Google Scholar 

  18. J. Huang, W.H. Wang, Q. Fu, L. Yang, K. Zhang, J.Y. Zhang, B. Xiang, Stable electrical performance observed in large-scale monolayer WSe2(1–x)S2x with tunable bandgap. Nanotechnology 27, 13LT01 (2016)

    Article  Google Scholar 

  19. X.D. Duan, C. Wang, Z. Fan, G.L. Hao, L.Z. Kou, U. Halim, H.L. Li, X.P. Wu, Y.C. Wang, J.H. Jiang, A.L. Pan, Y. Huang, R.Q. Yu, X.F. Duan, Synthesis of WS2xSe2 – 2x alloy nanosheets with composition-tunable electronic properties. Nano Lett. 16, 264–269 (2016)

    Article  ADS  Google Scholar 

  20. Y.F. Chen, J.Y. Xi, D.O. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z.G. Shuai, Y.S. Huang, L.M. Xie, Tunable bandgap photoluminescence from atomically thin transition-metal dichalcogenide alloys. ACS Nano 7, 4610–4616 (2013)

    Article  Google Scholar 

  21. H.F. Liu, K.K. Ansah Antwi, S. Chua, D. Chi, Vapor-phase growth and characterization of Mo1 – xW x S2 (0 ≤ x ≤ 1) atomic layers on 2-inch sapphire substrates. Nanoscale 6, 624–629 (2014)

    Article  ADS  Google Scholar 

  22. Y. Kobayashi, S. Mori, Y. Maniwa, Y. Miyata, Bandgap-tunable lateral and vertical heterostructures based on monolayer Mo1 – xW x S2 alloys. Nano Res. 8, 3261–3271 (2015)

    Article  Google Scholar 

  23. J. Song, G.H. Ryu, S.J. Lee, S. Sim, C. Lee, T. Choi, H. Jung, Y. Kim, Z. Lee, J. Myoung, C. Dussarrat, C. Lansalot-Matras, J. Park, H. Choi, H. Kim, Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition- controlled multilayer. Nat. Commun. 6, 7817 (2015)

    Article  Google Scholar 

  24. Z.Q. Wang, P. Liu, Y. Ito, S.C. Ning, Y.W. Tan, T. Fujita, A. Hirata, M.W. Chen, Chemical vapor deposition of monolayer Mo1 – xW x S2 crystals with tunable bandgaps. Sci. Rep. 6, 21536 (2016)

    Article  ADS  Google Scholar 

  25. S.J. Zheng, L.F. Sun, T.T. Yin, A.M. Dubrovkin, F.C. Liu, Z. Liu, Z.X. Shen, H.J. Fan, Monolayers of WxMo1–xS2 alloy heterostructure with In-plane composition variations. Appl. Phys. Lett. 106, 063113 (2015)

    Article  ADS  Google Scholar 

  26. M. Zhang, J.X. Wu, Y.M. Zhu, D.O. Dumcenco, J.H. Hong, N.N. Mao, S.B. Deng, Y.F. Chen, Y.L. Yang, C.H. Jin, S.H. Chaki, Y.S. Huang, J. Zhang, L.M. Xie, Two-dimensional molybdenum tungsten diselenide alloys: Photoluminescence, Raman scattering, and electrical transport. ACS Nano 8, 7130–7137 (2014)

    Article  Google Scholar 

  27. S. Tongay, D.S. Narang, J. Kang, W. Fan, C. Ko, A.V. Luce, K.X. Wang, J. Suh, K.D. Patel, V.M. Pathak, J.B. Li, J.Q. Wu, Two-dimensional semiconductor alloys: Monolayer Mo1 – xW x Se2. Appl. Phys. Lett. 104, 012101 (2014)

    Article  ADS  Google Scholar 

  28. L.Y. Gan, Q.Y. Zhang, Y.J. Zhao, Y.C. Cheng, U. Schwingenschlögl, Order-disorder phase transitions in the two-dimensional semiconducting transition metal dichalcogenide alloys Mo1 – xW x X2 (X = S, Se, and Te). Sci. Rep. 4, 6691 (2014)

    Article  Google Scholar 

  29. M. Kang, B. Kim, S.H. Ryu, S.W. Jung, J. Kim, L. Moreschini, C. Jozwiak, E. Rotenberg, A. Bostwick, K.S. Kim, Universal mechanism of band-gap engineering in transition-metal dichalcogenides. Nano Lett. 17, 1610–1615 (2017)

    Article  ADS  Google Scholar 

  30. Y.F. Zhu, X.Y. Lang, Q. Jiang, The effect of alloying on the bandgap energy of nanoscaled semiconductor alloys. Adv. Funct. Mater. 18, 1422–1429 (2008)

    Article  Google Scholar 

  31. G. Guisbiers, G. Abudukelimu, M. Wautelet, L. Buchaillot, Size, Shape, composition, and segregation tuning of InGaAs thermo-optical properties. J. Phys. Chem. C 112, 17889–17892 (2008)

    Article  Google Scholar 

  32. Y. Wang, G. Ouyang, L.L. Wang, L.M. Tang, D.S. Tang, C. Q. Sun, Size- and composition-induced bandgap change of nanostructured compound of II–VI semiconductors. Chem. Phys. Lett. 463, 383–386 (2008)

    Article  ADS  Google Scholar 

  33. Y.C. Huang, X. Chen, D.M. Zhou, H. Liu, C. Wang, J.Y. Du, L.X. Ning, S.F. Wang, Stabilities, electronic and optical properties of SnSe2(1–x)S2x alloys: A first-principle study. J. Phys. Chem. C 120, 5839–5847 (2016)

    Article  Google Scholar 

  34. J. Kang, S. Tongay, J.B. Li, J.Q. Wu, Monolayer semiconducting transition metal dichalcogenide alloys: Stability and band bowing. J. Appl. Phys. 113, 143703 (2013)

    Article  ADS  Google Scholar 

  35. B. Rajbanshi, S. Sarkar, P. Sarkar, The electronic and optical properties of MoS2(1–x)Se2x and MoS2(1–x)Te2x monolayers. Phys. Chem. Chem. Phys. 17, 26166–26174 (2015)

    Article  Google Scholar 

  36. X.L. Wei, H. Zhang, G.C. Guo, X.B. Li, W.M. Lau, L.M. Liu, Modulating the atomic and electronic structures through alloying and heterostructure of single-layer MoS2. J. Mater. Chem. A 2, 2101–2109 (2014)

    Article  Google Scholar 

  37. C. Q. Sun, Size dependence of nanostructures: Impact of bond order deficiency. Prog. Solid State Chem. 35, 1–159 (2007)

    Article  Google Scholar 

  38. G. Ouyang, C.X. Wang, G.W. Yang, Surface energy of nanostructural materials with negative curvature and related size effects. Chem. Rev. 109, 4221–4247 (2009)

    Article  Google Scholar 

  39. A. Zhang, Z.M. Zhu, Y. He, G. Ouyang, Structure stabilities and transitions in polyhedral metal nanocrystals: An atomic-bond relaxation approach. Appl. Phys. Lett. 100, 171912 (2012)

    Article  ADS  Google Scholar 

  40. Y. He, W.B. Yu, G. Ouyang, Effect of stepped substrates on the interfacial adhesion properties of graphene membranes. Phys. Chem. Chem. Phys. 16, 11390–11397 (2014)

    Article  Google Scholar 

  41. L. Pauling, Atomic radii and interatomic distances in metals. J. Am. Chem. Soc. 69, 542–553 (1947)

    Article  Google Scholar 

  42. W.J. Huang, R. Sun, J. Tao, L.D. Menard, R.G. Nuzzo, J.M. Zuo, Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. Nat. Mater. 7, 308–313 (2008)

    Article  ADS  Google Scholar 

  43. H.B. Nielsen, D. L. Adams, r-factor analysis of the effect of non-structural parameters in LEED, applied to Al(111). J. Phys. C 15, 615 (1982)

    Article  ADS  Google Scholar 

  44. P. Staikov, T.S. Rahman, Multilayer relaxations and stresses on Mg surfaces. Phys. Rev. B 60, 15613 (1999)

    Article  ADS  Google Scholar 

  45. M.A. Boles, D. Ling, T. Hyeon, D.V. Talapin, The surface science of nanocrystals. Nat. Mater. 15, 141–153 (2016)

    Article  ADS  Google Scholar 

  46. V.M. Goldschmidt, Ber. Deutsch. Chem. Ges. 60, 1270 (1927)

    Google Scholar 

  47. Y.F. Li, Z. Zhou, S.B. Zhang, Z.F. Chen, MoS2 nanoribbons: High stability and unusual electronic and magnetic properties. J. Am. Chem. Soc. 130, 16739 (2008)

    Article  Google Scholar 

  48. Y.H. Liu, Y. Wan, M.L. Bo, J.X. Liu, X.X. Yang, Y.L. Huang, C. Q. Sun, Thermally driven (Mo, W)-(S2, Se2) phonon and photon energy relaxation dynamics. J. Phys. Chem. C 119, 25071 (2015)

    Article  Google Scholar 

  49. Z.M. Zhu, A. Zhang, G. Ouyang, G.W. Yang, Edge effect on bandgap shift in Si nanowires with polygonal cross-sections. Appl. Phys. Lett. 98, 263112 (2011)

    Article  ADS  Google Scholar 

  50. L.H. Liang, D. Liu, Q. Jiang, Size-dependent continuous binary solution phase diagram. Nanotechnology 14, 438–442 (2003)

    Article  ADS  Google Scholar 

  51. C.Q. Sun, B.K. Tay, S.P. Lau, X.W. Sun, X.T. Zeng, S. Li, H.L. Bai, H. Liu, Z.H. Liu, E.Y. Jiang, Bond contraction and lone pair interaction at nitride surfaces. J. Appl. Phys. 90, 2615 (2001)

    Article  ADS  Google Scholar 

  52. G. Ouyang, X. Tan, C.X. Wang, G.W. Yang, Solid solubility limit in alloying nanoparticles. Nanotechnology 17, 4257–4262 (2006)

    Article  ADS  Google Scholar 

  53. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)

    Article  ADS  Google Scholar 

  54. P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D.R.T. Zahn, S.M. de Vasconcellos, R. Bratschitsch, Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 21, 4908–4916 (2013)

    Article  ADS  Google Scholar 

  55. W.J. Zhao, Z. Ghorannevis, L.Q. Chu, M. Toh, C. Kloc, P.H. Tan, G. Eda, Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7, 791–797 (2013)

    Article  Google Scholar 

  56. G. Lucovsky, R.M. White, J.A. Benda, J.F. Revelli, Infrared-reflectance spectra of layered group-IV and group-VI transition-metal dichalcogenides. Phys. Rev. B 7, 3859 (1973)

    Article  ADS  Google Scholar 

  57. J. Mann, Q. Ma, P.M. Odenthal, M. Isarraraz, D. Le, E. Preciado, D. Barroso, K. Yamaguchi, G.S. Palacio, A. Nguyen, T. Tran, M. Wurch, A. Nguyen, V. Klee, S. Bobek, D. Sun, T.F. Heinz, T.S. Rahman, R. Kawakami, L. Bartels, 2-dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1–x)Se2x monolayers. Adv. Mater. 26, 1399–1404 (2014)

    Article  Google Scholar 

  58. D.O. Dumcenco, H. Kobayashi, Z. Liu, Y.-S. Huang, K. Suenaga, Visualization and quantification of transition metal atomic mixing in Mo1– xW x S2 single layers. Nat. Commun. 4, 1351 (2013)

    Article  Google Scholar 

  59. M. Pandey, A. Vojvodic, K.S. Thygesen, K.W. Jacobsen, Two-dimensional metal dichalcogenides and oxides for hydrogen evolution: a computational screening approach. J. Phys. Chem. Lett. 6, 1577–1585 (2015)

    Article  Google Scholar 

  60. S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.-S. Huang, C.-H. Ho, J. Yan, D. Frank Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F.M. Peeters, J. Wu, Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 5, 3252 (2014)

    Article  Google Scholar 

  61. H.-X. Zhong, S. Gao, J.-J. Shi, L. Yang, Quasiparticle band gaps, excitonic effects, and anisotropic optical properties of the monolayer distorted diamond-chain structures ReS2 and ReSe2. Phys. Rev. B 92, 115438 (2015)

    Article  ADS  Google Scholar 

  62. T.L. Tan, M.-F. Ng, G. Eda, Stable monolayer transition metal dichalcogenide ordered alloys with tunable electronic properties. J. Phys. Chem. C 120, 2501 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. 11574080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Ouyang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Zhang, Z. & Ouyang, G. Band shift of 2D transition-metal dichalcogenide alloys: size and composition effects. Appl. Phys. A 124, 292 (2018). https://doi.org/10.1007/s00339-018-1730-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1730-2

Navigation