Advertisement

Applied Physics A

, 124:284 | Cite as

First principles investigation of half-metallicity and spin gapless semiconductor in CH3NH3Cr x Pb1−xI3 mixed perovskites

  • H. M. Huang
  • Z. W. Zhu
  • C. K. Zhang
  • Z. D. He
  • S. J. Luo
Article

Abstract

The structural, electronic and magnetic properties of organic–inorganic hybrid mixed perovskites CH3NH3Cr x Pb1−xI3 (x = 0.25, 0.50, 0.75, 1.00) in cubic, tetragonal and orthorhombic phases have been investigated by first-principles calculation. The results indicate that the tetragonal CH3NH3Cr0.75Pb0.25I3 is a spin gapless semiconductor with Curie temperature of 663 K estimated using mean field approximation. All other CH3NH3Cr x Pb1−xI3 mixed perovskites are half-metallic ferromagnets together with 100% spin polarization, and their total magnetic moment are 4.00, 8.00, 12.00 and 16.00 µB per unit cell for x = 0.25, 0.50, 0.75 and 1.00, respectively. The effect of <100>, <110> and <111> orientation of organic cation CH3NH3+ on the electronic properties of CH3NH3Cr0.50Pb0.50I3 was investigated. The results show that the CH3NH3+ in different orientations have a slight effect on the lattice constants, the energy gap in minority-spin states, half-metallic gap, local magnetic moment, and Curie temperature.

Notes

Acknowledgements

Project supported by the National Natural Science Foundation of China (Grant nos. 11647133 and 11674113), the Natural Science Foundation of Hubei Province (Grant nos. 2017CFB740 and 2014CFB631), the Scientific Research Items Foundation of Hubei Educational Committee (Grant no. Q20141802), and the Hubei Provincial Collaborative Innovation Center for Optoelectronics.

References

  1. 1.
    X.L. Wang, Phys. Rev. Lett. 100, 156404 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    R.A. de Groot, F.M. Mueller, P.G. van Engen, K.H.J. Buschow, Phys. Rev. Lett. 50, 2024 (1983)ADSCrossRefGoogle Scholar
  3. 3.
    I. Žutić, J. Fabian, S.D. Sarma, Rev. Mod. Phys. 76, 323 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    I. Galanakis, E. Şaşıoğlu, Appl. Phys. Lett. 99, 052509 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    G.Y. Gao, K.L. Yao, Appl. Phys. Lett. 103, 232409 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    V. Pardo, W.E. Pickett, Phys. Rev. B 80, 054415 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    J.M.K. Al-zyadi, M.H. Jolan, K.L. Yao, J. Magn. Magn. Mater. 403, 8 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    S. Esteki, F. Ahmadian, J. Magn. Magn. Mater. 438, 12 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    S.A. Khandy, D.C. Gupta, RSC Adv. 6, 97641 (2016)CrossRefGoogle Scholar
  10. 10.
    K. Schwarz, J. Phys. F Met. Phys. 16, L211 (1986)ADSCrossRefGoogle Scholar
  11. 11.
    S.D. Guo, B.G. Liu, EPL 93, 47006 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    M.S. Miao, W.R.L. Lambrech, Phys. Rev. B 72, 064409 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    H.S. Saini, M.K. Kashyap, M. Kumar, J. Thakur, M. Singh, A.H. Reshak, G.S.S. Saini, J. Alloys Compd. 649, 184 (2015)CrossRefGoogle Scholar
  14. 14.
    H. Yahi, A. Meddour, J. Magn. Magn. Mater. 401, 116 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    G.Y. Gao, K.L. Yao, E. Şaşıoğlu, L.M. Sandratskii, Z.L. Liu, J.L. Jiang, Phys. Rev. B 75, 174442 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    N.N. Zu, J. Wang, Y. Wang, Z.J. Wu, J. Alloys Compd. 636, 257 (2015)CrossRefGoogle Scholar
  17. 17.
    P. Li, R.C. Ma, X.L. Chen, M.J. Ren, Jpn. J. Appl. Phys. 56, 041201 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Ding, Y. Wang, Appl. Phys. Lett. 102, 143115 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Li, Z. Zhou, P. Shen, Z. Chen, ASC Nano 3, (2009) (1952)Google Scholar
  20. 20.
    J. Lei, M.C. Xu, S.J. Hu, Appl. Surf. Sci. 416, 681 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    G.Y. Gao, G.Q. Ding, J. Li, K.L. Yao, M.H. Wu, M.C. Qian, Nanoscale 8, 8986 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    S.W. Chen, S.C. Huang, G.Y. Guo, S. Chiang, J.M. Lee, S.A. Chen, S.C. Haw, K.T. Lu, J.M. Chen, Appl. Phys. Lett. 101, 222104 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    X.T. Wang, Z.X. Cheng, J.L. Wang, X.L. Wang, G.D. Liu, J. Mater. Chem. C 4, 7176 (2016)CrossRefGoogle Scholar
  24. 24.
    S. Ouardi, G.H. Fecher, C. Felser, J. Kubler, Phys. Rev. Lett. 110, 100401 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)CrossRefGoogle Scholar
  26. 26.
    National Renewable Energy Labs (NREL). Efficiency Chart. https://www.nrel.gov/pv/assets/images/efficiency-chart.png
  27. 27.
    J. Feng, B. Xiao, J. Phys. Chem. C 118, 19655 (2014)CrossRefGoogle Scholar
  28. 28.
    G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, T.C. Sum, Science 342, 344 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    M. Grätzel, Nat. Mater. 13, 838 (2014)CrossRefGoogle Scholar
  30. 30.
    S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Science 342, 341 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    H.X. Zhu, J.M. Liu, Sci. Rep. 6, 37425 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    Y.Q. Zhao, B. Liu, Z.L. Yu, J.M. Ma, Q. Wan, P.B. He, M.Q. Cai, J. Mater. Chem. C 5, 5356 (2017)CrossRefGoogle Scholar
  33. 33.
    C. Bernal, K. Yang, J. Phys. Chem. C 118, 24383 (2014)CrossRefGoogle Scholar
  34. 34.
    A. Stroppa, P. Barone, P. Jain, J.M. Perez-Mato, S. Picozzi, Adv. Mater. 25, 2284 (2013)CrossRefGoogle Scholar
  35. 35.
    A. Stroppa, P. Jain, P. Barone, M. Marsman, J.M. Perez-Mato, A.K. Cheetham, H.W. Kroto, S. Picozzi, Angew. Chem. Int. Ed. 50, 5847 (2011)CrossRefGoogle Scholar
  36. 36.
    J.M. Frost, K.T. Butler, F. Brivio, C.H. Hendon, M. van Schilfgaarde, A. Walsh, Nano Lett. 14, 2584 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    S. Liu, F. Zheng, N.Z. Koocher, H. Takenaka, F. Wang, A.M. Rappe, J. Phys. Chem. Lett. 6, 693 (2015)CrossRefGoogle Scholar
  38. 38.
    Y. Kutes, L. Ye, Y. Zhou, S. Pang, B.D. Huey, N.P. Padture, J. Phys. Chem. Lett. 5, 3335 (2014)CrossRefGoogle Scholar
  39. 39.
    G. Kresse, J. Hafner, Phys. Rev. B 48, 13115 (1993)ADSCrossRefGoogle Scholar
  40. 40.
    P.E. Blächl, Phys. Rev. B 50, 17953 (1994)ADSCrossRefGoogle Scholar
  41. 41.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  42. 42.
    Y. Kawamura, H. Mashiyama, K. Hasebe, J. Phys. Soc. Jpn. 71, 1694 (2002)ADSCrossRefGoogle Scholar
  43. 43.
    J. Feng, B. Xiao, J. Phys. Chem. Lett. 5, 1278 (2014)CrossRefGoogle Scholar
  44. 44.
    C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Inorg. Chem. 52, 9019 (2013)CrossRefGoogle Scholar
  45. 45.
    T. Baikie, Y. Fang, J.M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, M. Graetzel, T.J. White, J. Mater. Chem. A 1, 5628 (2013)CrossRefGoogle Scholar
  46. 46.
    E. Mosconi, A. Amat, M.K. Nazeeruddin, M. Grätzel, F. De Angelis, J. Phys. Chem. C 117, 13902 (2013)CrossRefGoogle Scholar
  47. 47.
    L. Lang, J.H. Yang, H.R. Liu, H.J. Xiang, X.G. Gong, Phys. Lett. A 378, 290 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    J.H. Im, C.R. Lee, J.W. Lee, S.W. Park, N.G. Par, Nanoscale 3, 4088 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    X. Zhu, H. Su, R.A. Marcus, M.E. Michel-Beyerle, J. Phys. Chem. Lett. 5, 3061 (2014)CrossRefGoogle Scholar
  50. 50.
    A. Poglitsch, D. Walter, J. Chem. Phys. 87, 6373 (1987)ADSCrossRefGoogle Scholar
  51. 51.
    E. Menéndez-Proupin, P. Palacios, P. Wahnón, J.C. Conesa, Phys. Rev. B 90, 045207 (2014)ADSCrossRefGoogle Scholar
  52. 52.
    A. Kundu, S. Ghosh, R. Banerjee, S. Ghosh, B. Sanyal, Sci. Rep. 7, 1803 (2017)ADSCrossRefGoogle Scholar
  53. 53.
    X.F. Ge, Y.M. Yuan, J. Magn. Magn. Mater. 321, 198 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    Z.Y. Tan, W.Z. Xiao, L.L. Wang, Y.C. Yang, J. Appl. Phys. 112, 123920 (2012)ADSCrossRefGoogle Scholar
  55. 55.
    J.H. Zhang, X.X. Li, J.L. Yang, J. Mater. Chem. C 3, 2563 (2015)CrossRefGoogle Scholar
  56. 56.
    K. Sato, L. Bergqvist, J. Kudrnovský, P.H. Dederichs, O. Eriksson, I. Turek, B. Sanyal, G. Bouzerar, H. Katayama-Yoshida, V.A. Dinh, T. Fukushima, H. Kizaki, R. Zeller, Rev. Mod. Phys. 82, 1633 (2010)ADSCrossRefGoogle Scholar
  57. 57.
    J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006)ADSCrossRefGoogle Scholar
  58. 58.
    B.G. Liu, Phys. Rev. B 67, 172411 (2003)ADSCrossRefGoogle Scholar
  59. 59.
    W.H. Xie, Y.Q. Xu, B.G. Liu, D.G. Pettifor, Phys. Rev. Lett. 91, 037204 (2003)ADSCrossRefGoogle Scholar
  60. 60.
    R.J. Soulen Jr., J.M. Byers, M.S. Osofsky, B. Nadgorny, T. Ambrose, S.F. Cheng, P.R. Broussard, C.T. Tanaka, J. Nowak, J.S. Moodera, A. Barry, J.M.D. Coey Science 282, 85 (1998)ADSCrossRefGoogle Scholar
  61. 61.
    B. Balke, S. Wurmehl, G.H. Fecher, C. Felser, J. Kübler, Sci. Technol. Adv. Mater. 9, 014102 (2008)CrossRefGoogle Scholar
  62. 62.
    H.L. Huang, J.C. Tung, G.Y. Guo, Phys. Rev. B 91, 134409 (2015)ADSCrossRefGoogle Scholar
  63. 63.
    Y.J. Sun, Z.W. Zhuo, X.J. Wu, J.L. Yang, Nano Lett. 17, 2771 (2017)ADSCrossRefGoogle Scholar
  64. 64.
    R.E. Wasylishen, O. Knop, J.B. Macdonald, Solid State Commun. 56, 581 (1985)ADSCrossRefGoogle Scholar
  65. 65.
    A. Stroppa, C. Quarti, F.D. Angelis, S. Picozzi, J. Phys. Chem. Lett. 6, 2223 (2015)CrossRefGoogle Scholar
  66. 66.
    S. Hu, H. Gao, Y. Qi, Y. Tao, Y. Li, J.R. Reimers, M. Bokdam, C. Franchini, D.D. Sante, A. Stroppa, W. Ren, J. Phys. Chem. C 121, 23045 (2017)CrossRefGoogle Scholar
  67. 67.
    A. Stroppa, D.D. Sante, P. Barone, M. Bokdam, G. Kresse, C. Franchini, M.-H. Whangbo, S. Picozzi, Nat. Commun. 5, 5900 (2014)CrossRefGoogle Scholar
  68. 68.
    F. Brivio, A.B. Walker, A. Walsh, APL Mater. 1, 042111 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • H. M. Huang
    • 1
  • Z. W. Zhu
    • 1
  • C. K. Zhang
    • 1
  • Z. D. He
    • 1
  • S. J. Luo
    • 1
  1. 1.School of Science and Advanced Functional Material and Photoelectric Technology Research InstitutionHubei University of Automotive TechnologyShiyanChina

Personalised recommendations