Skip to main content
Log in

Enhanced optical and electrical properties of Y-doped ZnO nanoparticles having different Y concentrations

  • Published:
Applied Physics A Aims and scope Submit manuscript

A Correction to this article was published on 02 March 2022

This article has been updated

Abstract

In this study, undoped ZnO and yttrium (Y)-doped ZnO (YZO) nanoparticles having different Y dopant concentrations (Zn1−xYxO; x = 0.005, 0.01, 0.015, 0.02) were successfully synthesized by sol–gel dip-coating method. Structural characterizations of the obtained samples were examined with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) analyses. SEM analysis shows that the synthesized nanoparticles are mostly dot-like structures. The sizes of nanostructures decrease with increasing Y-doping concentration up to 2 mol % Y and XRD results show that all of samples have wurtzite hexagonal structure of ZnO with (002) c-plane orientation. According to EDS results pure YZO samples are obtained. Optical transmittances of all samples were investigated in the range of 350–750 nm at room temperature. The average optical transmittances of YZO samples in the visible region are approximately over 90%, but the transmittance starts to decrease for Zn0.98Y0.02O sample. Also, it was observed that the optical transmittances of Y-doped samples are higher than that of undoped ZnO. The electrical properties of YZO samples were obtained by resistance measurements at room temperature. The resistivity of samples was found to be 2.25 × 10−3, 1.43 × 10−3, 7.8 × 10−3, and 1.3 × 10−3 Ω-cm for Zn0.995Y0.005O, Zn0.99Y0.01O, Zn0.985Y0.015O and Zn0.98Y0.02O, respectively. All these results show that surface, structural, electrical and optical properties of ZnO samples can be improved with doping Y up to 2 mol % concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. S.M. W.Park, Yi, Kim,, Park, Appl. Phys. Lett. 82, 4358 (2003)

    Article  ADS  Google Scholar 

  2. Z. Z.Liu, W. Jin, J. Li, Qiu, Mater. Lett. 59, 3620 (2005)

    Article  Google Scholar 

  3. A. Moezzi, A.M. McDonagh, M.B. Cortie, Chem. Eng. J. 1, 185 (2012)

    Google Scholar 

  4. Y. Wang, J. Yang, J. Kong, H. Jia, M. Yu, Superlatt. Microstr. 86, 228–235 (2015)

    Article  ADS  Google Scholar 

  5. A. Erdem, Talanta 74, 318 (2007)

    Article  Google Scholar 

  6. G.Q. Wang, Y.Q. Wang, L.X. Chen, J. Choo, Biosens, Bioelectron. 25, 1859 (2010)

    Article  Google Scholar 

  7. M. Ohyama, H. Kozuka, T. Yoko, J. Am. Ceram. Soc. 81, 1622 (1998)

    Article  Google Scholar 

  8. K.Y. Cheong, N. Muti, S.R. Ramanan, Thin Solid Films 410, 142 (2002)

    Article  ADS  Google Scholar 

  9. E.J. Luna-Arredondo, A. Maldonado, R. Asomoza, D.R. Acosta, M.A. Meléndez-Lira, M. de la L. Olvera, Thin Solid Films 490, 132 (2005)

    Article  ADS  Google Scholar 

  10. T. Ivanova, A. Harizanova, T. Koutzarova, B. Vertruyen, Journal of Physics: Conference Series 682, 012023, (2016)

  11. H. Ko, W.P. Tai, K.C. Kim, S.H. Kim, S.J. Suh, Y.S. Kim, J. Cryst. Growth 277, 352 (2005)

    Article  ADS  Google Scholar 

  12. J.B. Lee, S.H. Kwak, H.J. Kim, Thin Solid Films 423, 262 (2003)

    Article  ADS  Google Scholar 

  13. H. Park, Y. Kim, I. Ji, S.H. Lee, J.S. Kim, J.Y. Leem, J. Nanosci. Nanotechnol. 14(11), 833 (2014)

    Google Scholar 

  14. J.L. Zhao, X.M. Li, J.M. Bian, W.D. Yu, X.D. Gao, J. Cryst. Growth 276, 507 (2005)

    Article  ADS  Google Scholar 

  15. Y.S. Kim, W.P. Tai, S.J. Shu, Thin Solid Films 491, 153 (2005)

    Article  ADS  Google Scholar 

  16. R. Kaur, A.V. Singh, R.M. Mehra, phys. stat. sol. (a) 202(6), 1053–1059 (2005)

    Article  ADS  Google Scholar 

  17. Q. Yu, H. Yang, W. Fu, L. Chang, J. Xu, C. Yu, R. Wei, K. Du, H. Zhu, M. Li, G. Zou, Thin Solid Films 515, 3840–3843 (2007)

    Article  ADS  Google Scholar 

  18. K. Han, L.Q. Guo, N.D. Shepherd, M. Tao, IEEE 001275 (2011) (2011)

  19. H. Zhou, D. Yi, Z. Yu, L. Xiao, J. Li, Thin Solid Films 515, 6909–6914 (2007)

    Article  ADS  Google Scholar 

  20. S.T. Tan, B.J. Chen, X.W. Sun, W.J. Fan, H.S. Kwok, X. Zhang, S.J. Chua, J. Appl. Phys. 98, 013505 (2005)

    Article  ADS  Google Scholar 

  21. Q. Yu, W. Fu, C. Yu, H. Yang, R. Wei, Y. Sui, S. Liu, Z. Liu, M. Li, G. Wang, C. Shao, Y. Liu, G. Zou, J. Phys. D: Appl. Phys. 40, 5592–5597 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by Research Fund of the Istanbul University in Turkey with project number BEK-26582.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neslihan Üzar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Üzar, N. Enhanced optical and electrical properties of Y-doped ZnO nanoparticles having different Y concentrations. Appl. Phys. A 124, 303 (2018). https://doi.org/10.1007/s00339-018-1725-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1725-z

Navigation